Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 16(39): 21383-90, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25179771

ABSTRACT

We have developed a simple model for incorporating the influence of external pressure and solution pH into a cluster based (i.e. comprising the central Al(3+) cation and nearest neighbor coordinating H2O and OH(-) ligands) 1st principles approach to investigate the hydrolysis equilibria of aqueous Al(3+) monomeric species in high pressure environments such as are found in the Earth's mantle. Our model is demonstrated to reproduce the well documented bulk chemistry of the aqueous Al(3+) system under ambient conditions, namely the system is dominated at low and high pH by the 6-coordinated aqua species and 4 coordinated hydroxide species, respectively, while all remaining species occupy a narrow intermediate pH range. Coupling this model to changes in solution pH is achieved by using [H3O(+)] as a parameter in the definition of the formation equilibrium constants used; the influence of external pressure is evaluated using Planck's equation. This approach predicts that changes in external pressure will induce drastic changes in the aqueous solubility of these species under high pressure conditions and moderate changes at as low as 5 GPa. Finally, some industrial and geochemical implications of this result are discussed.

2.
Phys Chem Chem Phys ; 16(8): 3807-14, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24435016

ABSTRACT

We present the results of a theoretical investigation focusing on the solvent structure surrounding the -1, 0 and +1 charged species of F, Cl, Br and I halogen atoms and F2, Cl2, Br2 and I2 di-halogen molecules in a methanol solvent and its influence on the electronic structure of the solute molecules. Our results show a large stabilizing effect arising from the solute-solvent interactions. Well-formed first solvation shells are observed for all species, the structure of which is strongly influenced by the charge of the solute species. Detailed analysis reveals that coordination number, CN, solvent orientation, θ, and solute-solvent distance, d, are important structural characteristics which are coupled to changes in the electronic structure of the solute. We propose that the fundamental chemistry of any solute species is generally regulated by these solvent degrees of freedom.

3.
Phys Chem Chem Phys ; 15(37): 15309-11, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23835932

ABSTRACT

We predict that electron attachment may be used with ESI-MS techniques to observe neutral Al metal aqua-oxo-hydroxo species and the complex polymerization and precipitation reactions in which they participate. Neutral aqueous metal species have, so far, been invisible to ESI-MS techniques.


Subject(s)
Aluminum Compounds/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Chemical Precipitation , Electrons , Hydrolysis , Hydroxides/chemistry , Models, Molecular , Polymerization , Water/chemistry
4.
J Phys Chem B ; 117(33): 9669-76, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23869464

ABSTRACT

Low energy electron-attachment-induced damage in DNA, where dissociation channels may involve multiple bonds including complex bond rearrangements and significant nuclear motions, is analyzed here. Quantum mechanics/molecular mechanics (QM/MM) calculations reveal how rearrangements of electron density after vertical electron attachment modulate the position and dynamics of the atomic nuclei in DNA. The nuclear motions involve the elongation of the P-O (P-O(3') and P-O(5')) and C-C (C(3')-C(4') and C(4')-C(5')) bonds for which the acquired kinetic energy becomes high enough so that the neighboring C(3')-O(3') or C(5')-O(5') phosphodiester bond may break almost immediately. Such dynamic behavior should happen on a very short time scale, within 15-30 fs, which is of the same order of magnitude as the time scale predicted for the excess electron to localize around the nucleobases. This result indicates that the C-O phosphodiester bonds can break before electron transfer from the backbone to the base.


Subject(s)
DNA Damage , DNA/chemistry , DNA/metabolism , Electrons , Models, Molecular , Quantum Theory
5.
J Am Soc Mass Spectrom ; 24(6): 926-31, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23595261

ABSTRACT

We present results showing that our recently developed density functional theory (DFT)-based speciation model of the aqueous Al(3+) system has the potential to improve the interpretations of ESI-MS studies of aqueous metal cation hydrolytic speciation. The main advantages of our method are that (1) it allows for the calculation of the relative abundance of a given species which may be directly assigned to the signal intensity in a mass spectrum; (2) in cases where species with identical m/z ratios may coexist, the assignment can be unambiguously assigned based on their theoretical relative abundances. As a demonstration of its application, we study four pairs of monomer and dimer aqueous Al(3+) species, each with identical m/z ratio. For some of these pairs our method predicts that the dominant species changes from the monomer to the dimer species under varying pH conditions.

6.
Chemistry ; 19(9): 3047-60, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23315704

ABSTRACT

Herein, we report on the structure and dynamics of the aqueous Ca(2+) system studied by using ab initio molecular dynamics (AIMD) simulations. Our detailed study revealed the formation of well-formed hydration shells with characteristics that were significantly different to those of bulk water. To facilitate a robust comparison with state-of-the-art X-ray absorption fine structure (XAFS) data, we employ a 1st principles MD-XAFS procedure and directly compare simulated and experimental XAFS spectra. A comparison of the data for the aqueous Ca(2+) system with those of the recently reported Zn(2+), Fe(3+), and Al(3+) species showed that many of their structural characteristics correlated well with charge density on the cation. Some very important exceptions were found, which indicated a strong sensitivity of the solvent structure towards the cation's valence electronic structure. Average dipole moments for the 2nd shell of all cations were suppressed relative to bulk water.

7.
Inorg Chem ; 51(20): 10856-69, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23035987

ABSTRACT

The Car-Parrinello-based molecular dynamics (CPMD) method was used to investigate the ion-pairing behavior between Cl(-) and Al(3+) ions in an aqueous AlCl(3) solution containing 63 water molecules. A series of constrained simulations was carried out at 300 K for up to 16 ps each, with the internuclear separation (r(Al-Cl)) between the Al(3+) ion and one of the Cl(-) ions held constant. The calculated potential of mean force (PMF) of the Al(3+)-Cl(-) ion pair shows a global minimum at r(Al-Cl) = 2.3 Å corresponding to a contact ion pair (CIP). Two local minima assigned to solvent-separated ion pairs (SSIPs) are identified at r(Al-Cl) = 4.4 and 6.0 Å. The positions of the free energy minima coincide with the hydration-shell intervals of the Al(3+) cation, suggesting that the Cl(-) ion is inclined to reside in regions with low concentrations of water molecules, that is, between the first and second hydration shells of Al(3+) and between the second shell and the bulk. A detailed analysis of the solvent structure around the Al(3+) and Cl(-) ions as a function of r(Al-Cl) is presented. The results are compared to structural data from X-ray measurements and unconstrained CPMD simulations of single Al(3+) and Cl(-) ions and AlCl(3) solutions. The dipole moments of the water molecules in the first and second hydration shells of Al(3+) and in the bulk region and those of Cl(-) ions were calculated as a function of r(Al-Cl). Major changes in the electronic structure of the system were found to result from the removal of Cl(-) from the first hydration shell of the Al(3+) cation. Finally, two unconstrained CPMD simulations of aqueous AlCl(3) solutions corresponding to CIP and SSIP configurations were performed (17 ps, 300 K). Only minor structural changes were observed in these systems, confirming their stability.

8.
Phys Chem Chem Phys ; 14(22): 8058-66, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22569929

ABSTRACT

We have investigated aqueous Al-dimer complexes using density functional theory methods (e.g. the B3LYP exchange-correlation functional and the 6-311++G(d,p) basis set). In these calculations interactions between the Al(3+) cations and the H(2)O or OH(-) coordinating ligands are considered explicitly while the second hydration shell and remaining solvent are treated as a continuum under the IEF-PCM formalism. The Al-dimer chemical reactivity is discussed by analysis of changes in geometry, electronic structure and Gibbs free energy of formation, relative to two independent Al(H(2)O) monomers, as a function of water and hydroxide coordination. Our results indicate that the mechanism of cooperativity, i.e. decreased Al-water bond stability with increasing OH(-) coordination and increased water ligand hydrolysis as complex CN decreases, is operating on the dimer species and that, therefore, a wide variety of dimer species are available. While the stability of these species is observed to be dependent on the number of water and hydroxide ligands, the hydroxide bridging structure (singly, doubly and triply bridged species are considered) does not appear to correlate with dimer stability. Interestingly, intra-molecular H-bonds (in the form of the well known H(3)O bridge as well as two bridging structures, H(4)O(2) and H(2)O, that have not, to our knowledge, been previously considered) are observed to influence dimer stability. The evaluation of the equilibrium mole fraction of the dimer species in equilibrium with the aqueous Al(3+) monomer species of our previous study displays the qualitatively correct trend of solution composition as pH increases, namely monomeric aqueous Al(3+) and Al(OH) complexes dominate at low and high pH, respectively, and all remaining monomer and dimer species exist at intermediate pH. Further refinement of our data set by eliminating dimer complexes with OH/Al ratios greater than 2.6 brings our predicted equilibrium mole fraction distributions into excellent agreement with experimental observations. The triply bridged dimer is observed in low amounts while the singly and doubly bridged dimers dominate our model system at pH = ∼4-7.

9.
J Phys Chem Lett ; 3(18): 2588-93, 2012 Sep 20.
Article in English | MEDLINE | ID: mdl-26295879

ABSTRACT

First-principles dynamics simulations (DFT, PBE96, and PBE0) and electron scattering calculations (FEFF9) provide near-quantitative agreement with new and existing XAFS measurements for a series of transition-metal ions interacting with their hydration shells via complex mechanisms (high spin, covalency, charge transfer, etc.). This analysis does not require either the development of empirical interparticle interaction potentials or structural models of hydration. However, it provides consistent parameter-free analysis and improved agreement with the higher-R scattering region (first- and second-shell structure, symmetry, dynamic disorder, and multiple scattering) for this comprehensive series of ions. DFT+GGA MD methods provide a high level of agreement. However, improvements are observed when exact exchange is included. Higher accuracy in the pseudopotential description of the atomic potential, including core polarization and reducing core radii, was necessary for very detailed agreement. The first-principles nature of this approach supports its application to more complex systems.

10.
Inorg Chem ; 49(17): 7826-31, 2010 Sep 06.
Article in English | MEDLINE | ID: mdl-20690682

ABSTRACT

The unprotonated and protonated monoreduced forms of the polyazaaromatic Ru(II) coordination complexes [Ru(tap)(3)](2+) and [Ru(tap)(2)(phen)](2+) (tap = 1,4,5,8-tetraazaphenanthrene ; phen = 1,10-phenanthroline), that is, [Ru(tap)(3)](*+), [Ru(tap)(2)(phen)](*+), [Ru(tap)(2)(tap-H)](*2+), and [Ru(tap)(tap-H)(phen)](*2+), were studied by Density Functional Theory (DFT). The electron spin density of these radical cations, the isotropic Fermi-contact, and the anisotropic dipolar contributions to the hyperfine coupling constants of the H nuclei were calculated in vacuo and using a continuum model for water solvation. For [Ru(tap)(2)(phen)](*+), as well as for its protonated form, the DFT results show that the unpaired electron is not localized on the phen ligand. For both [Ru(tap)(3)](*+) and [Ru(tap)(2)(phen)](*+), they reveal high electron spin density in the vicinity of tap H-2 and tap H-7 (the H atoms in the ortho position of the tap non-chelating N atoms). These results are in full agreement with recent steady-state (1)H photo-Chemically Induced Dynamic Nuclear Polarization (photo-CIDNP) measurements. The DFT calculations performed for the protonated species also predict major (1)H photo-CIDNP enhancements at these positions. Interestingly, they indicate significantly different polarization for tap H-9,10, suggesting that the occurrence of a photoinduced electron transfer with protonation of the reduced species might be detected by high-precision photo-CIDNP experiments.


Subject(s)
Organometallic Compounds/chemistry , Phenanthrenes/chemistry , Phenanthrolines/chemistry , Ruthenium/chemistry , Models, Molecular , Oxidation-Reduction , Photochemical Processes , Quantum Theory
11.
J Phys Chem A ; 114(29): 7791-9, 2010 Jul 29.
Article in English | MEDLINE | ID: mdl-20597555

ABSTRACT

Aqua/hydroxo mononuclear Al(3+) species in aqueous solution are investigated using density functional theory (DFT B3LYP/6-311++G(d,p)) and the polarized continuum model (PCM). Optimized gas-phase geometries have been obtained for the species Al(OH)(n)(H(2)O)(m)((3-n)+) in which n = 0, 1, 2, 3, or 4 while (n + m) = 4, 5, or 6. For Al(OH)(2)(H(2)O)(4)(1+) the cis and trans geometries were considered. The structures were analyzed in terms of water and hydroxide M-O and O-H distances, which are shown to be strongly modulated by water hydrolysis. The atomic charges were computed and the electronic structure of these complexes is discussed. The conversion from one aqua-/hydroxo- species to another follows independent hydrolysis and dehydration reactions for which the aqueous Gibbs free energies have been estimated by means of constructing thermodynamic cycles. Results clearly demonstrate that the dehydration reaction is increasingly favorable as hydrolysis proceeds. Similarly, as the complex coordination number decreases the hydrolysis reaction proceeds increasingly more favorably. The aqueous Gibbs free energy of each species, relative to Al(H(2)O)(6)(3+), has been determined by combining the appropriate Gibbs free energies of the hydrolysis and dehydration reactions demonstrating that the additive effect is quite complex showing a gradual transition from preferring the 6-coordination to 5-coordination to 4-coordination as a function of ligand hydrolysis, in agreement with published experimental and theoretical work. We have also computed the equilibrium constants of each of the above reactions and, using [H(+)] as a parameter, estimated the mole fraction of each species as a function of pH. This offers a clear demonstration that the qualitative hydrolysis behavior, e.g., cooperativity, of aqueous Al(3)+ species is obtained at the B3LYP/IEF-PCM level of theory.

12.
J Chem Phys ; 132(19): 194502, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20499974

ABSTRACT

Results of ab initio molecular dynamics (AIMD) simulations (density functional theory+PBE96) of the dynamics of waters in the hydration shells surrounding the Zn(2+) ion (T approximately 300 K, rho approximately 1 gm/cm(3)) are compared to simulations using a combined quantum and classical molecular dynamics [AIMD/molecular mechanical (MM)] approach. Both classes of simulations were performed with 64 solvating water molecules ( approximately 15 ps) and used the same methods in the electronic structure calculation (plane-wave basis set, time steps, effective mass, etc.). In the AIMD/MM calculation, only six waters of hydration were included in the quantum mechanical (QM) region. The remaining 58 waters were treated with a published flexible water-water interaction potential. No reparametrization of the water-water potential was attempted. Additional AIMD/MM simulations were performed with 256 water molecules. The hydration structures predicted from the AIMD and AIMD/MM simulations are found to agree in detail with each other and with the structural results from x-ray data despite the very limited QM region in the AIMD/MM simulation. To further evaluate the agreement of these parameter-free simulations, predicted extended x-ray absorption fine structure (EXAFS) spectra were compared directly to the recently obtained EXAFS data and they agree in remarkable detail with the experimental observations. The first hydration shell contains six water molecules in a highly symmetric octahedral structure is (maximally located at 2.13-2.15 A versus 2.072 A EXAFS experiment). The widths of the peak of the simulated EXAFS spectra agree well with the data (8.4 A(2) versus 8.9 A(2) in experiment). Analysis of the H-bond structure of the hydration region shows that the second hydration shell is trigonally bound to the first shell water with a high degree of agreement between the AIMD and AIMD/MM calculations. Beyond the second shell, the bonding pattern returns to the tetrahedral structure of bulk water. The AIMD/MM results emphasize the importance of a quantum description of the first hydration shell to correctly describe the hydration region. In these calculations the full d(10) electronic structure of the valence shell of the Zn(2+) ion is retained. The simulations show substantial and complex charge relocation on both the Zn(2+) ion and the first hydration shell. The dipole moment of the waters in the first hydration shell is 3.4 D (3.3 D AIMD/MM) versus 2.73 D bulk. Little polarization is found for the waters in the second hydration shell (2.8 D). No exchanges were seen between the first and the second hydrations shells; however, many water transfers between the second hydration shell and the bulk were observed. For 64 waters, the AIMD and AIMD/MM simulations give nearly identical results for exchange dynamics. However, in the larger particle simulations (256 waters) there is a significant reduction in the second shell to bulk exchanges.


Subject(s)
Molecular Dynamics Simulation , Quantum Theory , Water/chemistry , Zinc/chemistry , Ions/chemistry , Molecular Structure
13.
J Phys Chem A ; 114(5): 2189-200, 2010 Feb 11.
Article in English | MEDLINE | ID: mdl-20078102

ABSTRACT

Results of parameter-free first principles simulations of a spin up 3d(5) Fe(3+) ion hydrated in an aqueous solution (64 waters, 30 ps, 300 K) are reported. The first hydration shell associated with the first maximum of the radial distribution function, g(FeO)(r), at d(Fe-O(I)) = 2.11-2.15 A, contains 6 waters with average d(OH) = 0.99 A, in good agreement with observations. A second shell with average coordination number 13.3 can be identified with average shell radius of d(Fe-O(II)) = 4.21-4.32 A. The waters in this hydration shell are coordinated to the first shell via a trigonal H-bond network with d(O(I)-O(II)) = 2.7-2.9 A, also in agreement with experimental measurements. The first shell tilt angle average is 33.4 degrees as compared to the reported value of 41 degrees . Wannier-Boys orbitals (WBO) show an interaction between the unoccupied 3d orbitals of the Fe(3+) valence (spin up, 3d(5)) and the occupied spin down lone pair orbitals of first shell waters. The effect of the spin ordering of the Fe(3+) ion on the WBO is not observed beyond the first shell. From this local bond analysis and consistent with other observations, the electronic structure of waters in the second shell is similar to that of a bulk water even in this strongly interacting system. H-bond decomposition shows significant bulk-like structure within the second shell for Fe(3+). The vibrational density of states shows a first shell red shift of 230 cm(-1) for the v(1),2v(2),v(3) overtone, in reasonable agreement with experimental estimates for trivalent cations (300 cm(-1)). No exchanges between first and second shell were observed. Waters in the second shell exchanged with bulk waters via dissociative and associative mechanisms. Results are compared with an AIMD study of Al(3+) and 64 waters. For Fe(3+) the average first shell tilt angle is larger and the tilt angle distribution wider. H-bond decomposition shows that second shell to second shell H-bonding is enhanced in Fe(3+) suggesting an earlier onset of bulk-like water structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...