Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38251106

ABSTRACT

It is known that the dielectric layer (resonator) located behind the conducting plate of the bolometer system can significantly increase its sensitivity near the resonance frequencies. In this paper, the possibility of receiving broadband electromagnetic signals in a multilayer bolometric meta-material made of alternating conducting (e.g., silicon semiconductor) and dielectric layers is demonstrated both experimentally and numerically. It is shown that such a multilayer structure acts as a lattice of resonators and can significantly increase the width of the frequency band of efficient electromagnetic energy absorption. The parameters of the dielectric and semiconductor layers determine the frequency bands. Numerical modeling of the effect has been carried out under the conditions of our experiment. The numerical results show acceptable qualitative agreement with the experimental data. This study develops the previously proposed technique of resonant absorption of electromagnetic signals in bolometric structures.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36986027

ABSTRACT

An ultrashort-pulse laser inscription of embedded birefringent microelements was performed inside bulk fluorite in pre-filamentation (geometrical focusing) and filamentation regimes as a function of laser wavelength, pulsewidth and energy. The resulting elements composed of anisotropic nanolattices were characterized by retardance (Ret) and thickness (T) quantities, using polarimetric and 3D-scanning confocal photoluminescence microscopy, respectively. Both parameters exhibit a monotonous increase versus pulse energy, going over a maximum at 1-ps pulsewidth at 515 nm, but decrease versus laser pulsewidth at 1030 nm. The resulting refractive-index difference (RID) Δn = Ret/T ~ 1 × 10-3 remains almost constant versus pulse energy and slightly decreases at a higher pulsewidth, generally being higher at 515 nm. The birefringent microelements were visualized using scanning electron microscopy and chemically characterized using energy-dispersion X-ray spectroscopy, indicating the increase of calcium and the contrary decrease of fluorine inside them due to the non-ablative inscription character. Dynamic far-field optical diffraction of the inscribing ultrashort laser pulses also demonstrated the accumulative inscription character, depending on the pulse energy and the laser exposure. Our findings revealed the underlying optical and material inscription processes and demonstrated the robust longitudinal homogeneity of the inscribed birefringent microstructures and the facile scalability of their thickness-dependent retardance.

3.
Sensors (Basel) ; 23(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36772589

ABSTRACT

We examine the effect of resonant absorption of electromagnetic signals in a silicon semiconductor plasma layer when the dielectric plate is placed behind it both experimentally and numerically. It is shown that such plate acts as a dielectric resonator and can significantly increase the electromagnetic energy absorption in the semiconductor for certain frequencies determined by the dielectric plate parameters. Numerical modelling of the effect is performed under the conditions of conducted experiment. The numerical results are found to be in qualitative agreement with experimental ones. This study confirms the proposed earlier method of increasing the efficiency of bolometric-type detectors of electromagnetic radiation.

4.
Sensors (Basel) ; 22(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365983

ABSTRACT

We have determined conditions when a pair of coupled waveguides, a common element for integrated room-temperature photonics, can act as a qubit based on a system with a double-well potential. Moreover, we have used slow-varying amplitude approximation (SVA) for the "classical" wave equation to study the propagation of electromagnetic beams in a couple of dielectric waveguides both analytically and numerically. As a part of an extension of the optical-mechanical analogy, we have considered examples of "quantum operations" on the electromagnetic wave state in a pair of waveguides. Furthermore, we have provided examples of "quantum-mechanical" calculations of nonlinear transfer functions for the implementation of the considered element in optical neural networks.

5.
Sensors (Basel) ; 22(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35009938

ABSTRACT

We consider two of the most relevant problems that arise when modeling the properties of a tunnel radio communication channel through a plasma layer. First, we studied the case of the oblique incidence of electromagnetic waves on a layer of ionized gas for two wave polarizations. The resonator parameters that provide signal reception at a wide solid angle were found. We also took into account the unavoidable presence of a protective layer between the plasma and the resonator, as well as the conducting elements of the antenna system in the dielectric itself. This provides the first complete simulation for a tunnel communication channel. Noise immunity and communication range studies were conducted for a prospective spacecraft radio line.

SELECTION OF CITATIONS
SEARCH DETAIL
...