Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34891230

ABSTRACT

The blood pressure (BP) cuff can be used to modulate blood flow and propagation of pressure pulse along the artery. In our previous work, we researched methods to adapt cuff modulation techniques for pulse transit time vs. BP calibration and for measurement of other hemodynamic indices of potential interest to critical care, such as arterial compliance. A model characterized the response of the vasculature located directly under the cuff, but assumed that no significant changes occur in the distal vasculature.This study has been tailored to gain insights into the response of distal BP and pulse transit time to cuff inflation. Invasive BP data collected downstream from the cuff demonstrates that highly dynamic processes occur in the distal arm during cuff inflation. Mean arterial pressure increases in the distal artery by up to 20 mmHg, leading to a decrease in pulse transit time of up to 20 ms. Clinical Relevance: Such significant changes need to be taken into account in order to improve non-invasive BP estimations and to enable inference of other hemodynamic parameters from vasculature response to cuff inflation. A simple model is developed in order to reproduce the observed behaviors. The lumped-parameter model demonstrates opportunities for cuff modulation measurements which can reveal information on parameters such as systemic resistance, distal arterial, venous compliances and artery-vein interaction.


Subject(s)
Blood Pressure Determination , Pulse Wave Analysis , Blood Pressure , Heart Rate , Hemodynamics
2.
Sensors (Basel) ; 21(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34451035

ABSTRACT

In standard critical care practice, cuff sphygmomanometry is widely used for intermittent blood pressure (BP) measurements. However, cuff devices offer ample possibility of modulating blood flow and pulse propagation along the artery. We explore underutilized arrangements of sensors involving cuff devices which could be of use in critical care to reveal additional information on compensatory mechanisms. In our previous work, we analyzed the response of the vasculature to occlusion perturbations by means of observations obtained non-invasively. In this study, our aim is to (1) acquire additional insights by means of invasive measurements and (2) based on these insights, further develop cuff-based measurement strategies. Invasive BP experimental data is collected downstream from the cuff in two patients monitored in the OR. It is found that highly dynamic processes occur in the distal arm during cuff inflation. Mean arterial pressure increases in the distal artery by 20 mmHg, leading to a decrease in pulse transit time by 20 ms. Previous characterizations neglected such distal vasculature effects. A model is developed to reproduce the observed behaviors and to provide a possible explanation of the factors that influence the distal arm mechanisms. We apply the new findings to further develop measurement strategies aimed at acquiring information on pulse arrival time vs. BP calibration, artery compliance, peripheral resistance, artery-vein interaction.


Subject(s)
Blood Pressure Determination , Pulse Wave Analysis , Arteries , Blood Pressure , Heart Rate , Humans
3.
Comput Methods Programs Biomed ; 196: 105492, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32603986

ABSTRACT

BACKGROUND AND OBJECTIVES: Measurement of arterial compliance is recognized as important for clinical use and for enabling better understanding of circulatory system regulation mechanisms. Estimation of arterial compliance involves either a direct measure of the ratio between arterial volume and pressure changes or an inference from the pulse wave velocity (PWV). In this study we demonstrate an approach to assess arterial compliance by fusion of these two information sources. The approach is based on combining oscillometry as used for blood pressure inference and PWV measurements based on ECG/PPG. Enabling reliable arterial compliance measurements will contribute to the understanding of regulation mechanisms of the arterial tree, possibly establishing arterial compliance as a key measure relevant in hemodynamic monitoring. METHODS: A measurement strategy, a physiological model, and a framework based on Bayesian principles are developed for measuring changes in arterial compliance based on combining oscillometry and PWV data. A simulation framework is used to study and validate the algorithm and measurement principle in detail, motivated by previous experimental findings. RESULTS: Simulations demonstrate the possibility of inferring arterial compliance via fusion of simultaneously acquired volume/pressure relationships and PWV data. In addition, the simulation framework demonstrates how Bayesian principles can be used to handle low signal - to - noise ratio and partial information loss. CONCLUSIONS: The developed simulation framework shows the feasibility of the proposed approach for assessment of arterial compliance by combining multiple data sources. This represents a first step towards integration of arterial compliance measurements in hemodynamic monitoring using existing clinical technology. The Bayesian approach is of particular relevance for such patient monitoring settings, where measurements are repeated frequently, context is relevant, and data is affected by artefacts. In addition, the simulation framework is necessary for future clinical-study design, in order to determine device specifications and the extent to which noise affects the inference process.


Subject(s)
Arteries , Pulse Wave Analysis , Bayes Theorem , Blood Pressure , Compliance , Humans , Oscillometry
SELECTION OF CITATIONS
SEARCH DETAIL
...