Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 14(47): 52815-52824, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36379472

ABSTRACT

A thiomolybdate [Mo3S13]2- nanocluster is a promising catalyst for hydrogen evolution reaction (HER) due to the high number of active edge sites. In this work, thiomolybdate cluster films are prepared by spin-coating of a (NH4)2Mo3S13 solution both on FTO glass substrates as hydrogen evolving electrodes and on highly 00.1-textured WSe2 for photoelectrochemical water splitting. As an electrocatalyst, [Mo3S13]2- clusters demonstrate a low overpotential of 220 mV at 10 mA cm-2 in 0.5 M H2SO4 electrolyte (pH 0.3) and remain structurally stable during the electrochemical cycling as revealed by in situ Raman spectroscopy. Moreover, as a co-catalyst on WSe2, [Mo3S13]2- clusters enhance the photocurrent substantially by more than two orders of magnitude (from 0.02 to 2.8 mA cm-2 at 0 V vs RHE). The synergistic interactions between the photoelectrode and catalyst, i.e., surface passivation and band bending modification by the [Mo3S13]2- cluster film, promoted HER catalytic activity of [Mo3S13]2- clusters influenced by the WSe2 support, are revealed by intensity-modulated photocurrent spectroscopy and density functional theory calculations, respectively. The band alignment of the WSe2/[Mo3S13]2- heterojunction, which facilitates the electron injection, is determined by correlating UV-vis with photoelectron yield spectroscopy results.

2.
ACS Appl Mater Interfaces ; 13(2): 2428-2436, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33426879

ABSTRACT

There is an urgent need for cheap, stable, and abundant catalyst materials for photoelectrochemical water splitting. Manganese oxide is an interesting candidate as an oxygen evolution reaction (OER) catalyst, but the minimum thickness above which MnOx thin films become OER-active has not yet been established. In this work, ultrathin (<10 nm) manganese oxide films are grown on silicon by atomic layer deposition to study the origin of OER activity under alkaline conditions. We found that MnOx films thinner than 1.5 nm are not OER-active. X-ray photoelectron spectroscopy shows that this is due to electrostatic catalyst-support interactions that prevent the electrochemical oxidation of the manganese ions close to the interface with the support, while in thicker films, MnIII and MnIV oxide layers appear as OER-active catalysts after oxidation and electrochemical treatment. From our investigations, it can be concluded that one MnIII,IV-O monolayer is sufficient to establish oxygen evolution under alkaline conditions. The results of this study provide important new design criteria for ultrathin manganese oxide oxygen evolution catalysts.

3.
ACS Appl Mater Interfaces ; 12(12): 13959-13970, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32096970

ABSTRACT

We assess a tandem photoelectrochemical cell consisting of a W:BiVO4 photoanode top absorber and a CuBi2O4 photocathode bottom absorber for overall solar water splitting. We show that the W:BiVO4 photoanode oxidizes water and produces oxygen at potentials ≥0.7 V vs RHE when CoPi is added as a cocatalyst. However, the CuBi2O4 photocathode does not produce a detectable amount of hydrogen from water reduction even when Pt or RuOx is added as a cocatalyst because the photocurrent primarily goes toward photocorrosion of CuBi2O4 rather than proton reduction. Protecting the CuBi2O4 photocathode with a CdS/TiO2 heterojunction and adding RuOx as a cocatalyst prevents photocorrosion and allows for photoelectrochemical production of hydrogen at potentials ≤0.3 V vs RHE. A tandem photoelectrochemical cell composed of a W:BiVO4/CoPi photoanode and a CuBi2O4/CdS/TiO2/RuOx photocathode produces hydrogen which can be detected under illumination at an applied bias of ≥0.4 V. Since the valence band of BiVO4 and conduction band of CuBi2O4 are adequately positioned to oxidize water and reduce protons, we hypothesize that the applied bias is required to overcome the relatively low photovoltages of the photoelectrodes, that is, the relatively low quasi-Fermi level splitting within BiVO4 and CuBi2O4. This work is the first experimental demonstration of hydrogen production from a BiVO4-CuBi2O4-based tandem cell and it provides important insights into the significance of photovoltage in tandem devices for overall water splitting, especially for cells containing CuBi2O4 photocathodes.

4.
J Am Chem Soc ; 139(42): 15094-15103, 2017 10 25.
Article in English | MEDLINE | ID: mdl-28968492

ABSTRACT

A new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBi2O4 photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBi2O4 photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials. Thus, a gradient in Cu vacancies leads to an internal electric field within CuBi2O4, which can facilitate charge separation. Compared to homogeneous CuBi2O4 photocathodes, CuBi2O4 photocathodes with a forward gradient show highly improved charge separation efficiency and enhanced photoelectrochemical performance for reduction reactions, while CuBi2O4 photocathodes with a reverse gradient show significantly reduced charge separation efficiency and photoelectrochemical performance. The CuBi2O4 photocathodes with a forward gradient produce record AM 1.5 photocurrent densities for CuBi2O4 up to -2.5 mA/cm2 at 0.6 V vs RHE with H2O2 as an electron scavenger, and they show a charge separation efficiency of 34% for 550 nm light. The gradient self-doping accomplishes this without the introduction of external dopants, and therefore the tetragonal crystal structure and carrier mobility of CuBi2O4 are maintained. Lastly, forward gradient self-doped CuBi2O4 photocathodes are protected with a CdS/TiO2 heterojunction and coated with Pt as an electrocatalyst. These photocathodes demonstrate photocurrent densities on the order of -1.0 mA/cm2 at 0.0 V vs RHE and evolve hydrogen with a faradaic efficiency of ∼91%.

5.
Nano Lett ; 17(3): 1529-1537, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28166406

ABSTRACT

GaN nanowires (NWs) doped with Mg as a p-type impurity were grown on Si(111) substrates by plasma-assisted molecular beam epitaxy. In a systematic series of experiments, the amount of Mg supplied during NW growth was varied. The incorporation of Mg into the NWs was confirmed by the observation of donor-acceptor pairs and acceptor-bound excitons in low-temperature photoluminescence spectroscopy. Quantitative information about the Mg concentrations was deduced from Raman scattering by local vibrational modes related to Mg. In order to study the type and density of charge carriers present in the NWs, we employed two photoelectrochemical techniques, open-circuit potential and Mott-Schottky measurements. Both methods showed the expected transition from n-type to p-type conductivity with increasing Mg doping level, and the latter characterization technique allowed us to quantify the charge carrier concentration. Beyond the quantitative information obtained for Mg doping of GaN NWs, our systematic and comprehensive investigation demonstrates the benefit of photoelectrochemical methods for the analysis of doping in semiconductor NWs in general.

6.
ACS Appl Mater Interfaces ; 8(50): 34490-34496, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27936545

ABSTRACT

The photoelectrochemical properties of (In,Ga)N nanowire photoanodes are investigated using H2O2 as a hole scavenger to prevent photocorrosion. Under simulated solar illumination, In0.16Ga0.84N nanowires grown by plasma-assisted molecular beam epitaxy show a high photocurrent of 2.7 mA/cm2 at 1.2 V vs reversible hydrogen electrode. This value is almost the theoretical maximum expected from the corresponding band gap (2.8 eV) for homogeneous bulk material without taking into account surface effects. These nanowires exhibit a higher incident photon-to-current conversion efficiency over a broader wavelength range and a higher photocurrent than a compact layer with higher In content of 28%. These results are explained by the combination of built-in electric fields at the nanowire sidewall surfaces and compositional fluctuations in (In,Ga)N, which gives rise to a radial Stark effect. This effect enables spatially indirect transitions at energies much lower than the band gap. The resulting broad band light absorption leads to high photocurrents. This benefit of the radial Stark effect in (In,Ga)N nanowires for solar harvesting applications opens up the perspective to break the theoretical limit for photocurrents.

7.
J Am Chem Soc ; 138(2): 635-40, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26651534

ABSTRACT

Today, most metal and nitrogen doped carbon catalysts for ORR reveal a heterogeneous composition. This can be reasoned by a nonoptimized precursor composition and various steps in the preparation process to get the required active material. The significant presence of inorganic metal species interferes with the assignment of descriptors related to the ORR activity and stability. In this work we present a simple and feasible way to reduce the contribution of inorganic metal species in some cases even down to zero. Such catalysts reveal the desired homogeneous composition of MeN4 (Me = metal) sites in the carbon that is accompanied by a significant enhancement in ORR activity. Among the work of other international groups, our iron-based catalyst comprises the highest density of FeN4 sites ever reported without interference of inorganic metal sites.

8.
J Phys Chem Lett ; 5(21): 3750-6, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-26278745

ABSTRACT

The applicability of analyzing by Mößbauer spectroscopy the structural changes of Fe-N-C catalysts that have been tested at the cathode of membrane electrode assemblies in proton exchange membrane (PEM) fuel cells is demonstrated. The Mößbauer characterization of powders of the same catalysts was recently described in our previous publication. A possible change of the iron species upon testing in fuel cell was investigated here by Mößbauer spectroscopy, energy-dispersive X-ray cross-sectional imaging, and neutron activation analysis. Our results show that the absorption probability of γ rays by the iron nuclei in Fe-N-C is strongly affected by the presence of Nafion and water content. A detailed investigation of the effect of an oxidizing treatment (1.2 V) of the non-noble cathode in PEM fuel cell indicates that the observed activity decay is mainly attributable to carbon oxidation causing a leaching of active iron sites hosted in the carbon matrix.

9.
J Am Chem Soc ; 135(28): 10242-5, 2013 Jul 17.
Article in English | MEDLINE | ID: mdl-23799779

ABSTRACT

We investigated the photoelectrochemical properties of both n- and p-type (In,Ga)N nanowires (NWs) for water splitting by in situ electrochemical mass spectroscopy (EMS). All NWs were prepared by plasma-assisted molecular beam epitaxy. Under illumination, the n-(In,Ga)N NWs exhibited an anodic photocurrent, however, no O2 but only N2 evolution was detected by EMS, indicating that the photocurrent was related to photocorrosion rather than water oxidation. In contrast, the p-(In,Ga)N NWs showed a cathodic photocurrent under illumination which was correlated with the evolution of H2. After photodeposition of Pt on such NWs, the photocurrent density was significantly enhanced to 5 mA/cm(2) at a potential of -0.5 V/NHE under visible light irradiation of ∼40 mW/cm(2). Also, incident photon-to-current conversion efficiencies of around 40% were obtained at -0.45 V/NHE across the entire visible spectral region. The stability of the NW photocathodes for at least 60 min was verified by EMS. These results suggest that p-(In,Ga)N NWs are a promising basis for solar hydrogen production.


Subject(s)
Gallium/chemistry , Indium/chemistry , Nanowires/chemistry , Water/chemistry , Electrochemical Techniques , Mass Spectrometry , Particle Size , Photochemical Processes , Surface Properties
10.
Phys Chem Chem Phys ; 15(5): 1452-9, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23243658

ABSTRACT

Crystalline RuS(2) layers were prepared on titanium sheets by reactive magnetron sputtering using a metallic ruthenium target and a H(2)S-Ar mixture as process gas. The ability of these layers for the electrooxidation of water (OER) was investigated by differential electrochemical mass spectrometry (DEMS) in 0.5 M H(2)SO(4) electrolyte. It was observed that the activity for water oxidation is increased with increasing temperature of the titanium substrate during the sputter deposition process whereas a competitive corrosion process is diminished. The reason for this effect seems to be a better crystallinity of these layers at higher substrate temperatures as it is proved by XRD analysis. In contrast to RuS(2) single crystals no photo effect could be observed on the sputtered layers under illumination with a tungsten lamp. Time resolved microwave conductivity analysis indicates the presence of mobile charge carriers after illumination but apparently these cannot participate in the electrooxidation of water.

11.
Phys Chem Chem Phys ; 15(5): 1389-98, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23247669

ABSTRACT

α-Fe(2)O(3) (hematite) photoanodes for the oxygen evolution reaction (OER) were prepared by a cost-efficient sol-gel procedure. Due to low active photoelectrochemical properties observed, it is assumed that the sol-gel procedure leads to hematite films with defects and surface states on which generated charge carriers are recombined or immobilized in trap processes. Electrochemical activation was proven to diminish unfavourable surface groups to some extent. More efficiently, a plasma treatment improves significantly the photoelectrochemical properties of the OER. X-ray photoelectron spectroscopy (XPS) analysis reveals an oxygen enriched surface layer with new oxygen species which may be responsible for the improved electrochemical activity. Due to surface photovoltage an increased fraction of transferred charge carriers from these newly produced surface defects are identified.


Subject(s)
Ferric Compounds/chemistry , Gels/chemistry , Light , Water/chemistry , Electrochemical Techniques , Oxidation-Reduction , Oxygen/chemistry
12.
Phys Chem Chem Phys ; 14(33): 11673-88, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22824866

ABSTRACT

Fe-based catalytic sites for the reduction of oxygen in acidic medium have been identified by (57)Fe Mössbauer spectroscopy of Fe/N/C catalysts containing 0.03 to 1.55 wt% Fe, which were prepared by impregnation of iron acetate on carbon black followed by heat-treatment in NH(3) at 950 °C. Four different Fe-species were detected at all iron concentrations: three doublets assigned to molecular FeN(4)-like sites with their ferrous ions in a low (D1), intermediate (D2) or high (D3) spin state, and two other doublets assigned to a single Fe-species (D4 and D5) consisting of surface oxidized nitride nanoparticles (Fe(x)N, with x≤ 2.1). A fifth Fe-species appears only in those catalysts with Fe-contents ≥0.27 wt%. It is characterized by a very broad singlet, which has been assigned to incomplete FeN(4)-like sites that quickly dissolve in contact with an acid. Among the five Fe-species identified in these catalysts, only D1 and D3 display catalytic activity for the oxygen reduction reaction (ORR) in the acid medium, with D3 featuring a composite structure with a protonated neighbour basic nitrogen and being by far the most active species, with an estimated turn over frequency for the ORR of 11.4 e(-) per site per s at 0.8 V vs. RHE. Moreover, all D1 sites and between 1/2 and 2/3 of the D3 sites are acid-resistant. A scheme for the mechanism of site formation upon heat-treatment is also proposed. This identification of the ORR-active sites in these catalysts is of crucial importance to design strategies to improve the catalytic activity and stability of these materials.


Subject(s)
Carbon/chemistry , Iron/chemistry , Nitrogen/chemistry , Oxygen/chemistry , Ammonia/chemistry , Catalysis , Electrodes , Electrolytes/chemistry , Oxidation-Reduction
13.
J Am Chem Soc ; 133(45): 18161-71, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-21916435

ABSTRACT

We present transmission electron microscope (TEM) tomography investigations of ruthenium-based fuel cell catalyst materials as employed in direct methanol fuel cells (DMFC). The digital three-dimensional representation of the samples not only enables detailed studies on number, size, and shape but also on the local orientation of the ruthenium particles to their support and their freely accessible surface area. The shape analysis shows the ruthenium particles deviate significantly from spherical symmetry which increases their surface to volume ratio. The morphological studies help to understand the structure formation mechanisms during the fabrication as well as the high effectiveness of these catalysts in the oxygen reduction reaction at the cathode side of fuel cells.

14.
Article in English | MEDLINE | ID: mdl-24179561

ABSTRACT

The high cost of proton-exchange-membrane fuel cells would be considerably reduced if platinumbased catalysts were replaced by iron-based substitutes, which have recently demonstrated comparable activity for oxygen reduction, but whose cause of activity decay in acidic medium has been elusive. Here, we reveal that the activity of Fe/N/C-catalysts prepared through a pyrolysis in NH3 is mostly imparted by acid-resistant FeN4-sites whose turnover frequency for the O2 reduction can be regulated by fine chemical changes of the catalyst surface. We show that surface N-groups protonate at pH 1 and subsequently bind anions. This results in decreased activity for the O2 reduction. The anions can be removed chemically or thermally, which restores the activity of acid-resistant FeN4-sites. These results are interpreted as an increased turnover frequency of FeN4-sites when specific surface N-groups protonate. These unprecedented findings provide new perspective for stabilizing the most active Fe/N/C-catalysts known to date.

15.
ACS Appl Mater Interfaces ; 1(8): 1623-39, 2009 Aug.
Article in English | MEDLINE | ID: mdl-20355776

ABSTRACT

Nine non-noble-metal catalysts (NNMCs) from five different laboratories were investigated for the catalysis of O(2) electroreduction in an acidic medium. The catalyst precursors were synthesized by wet impregnation, planetary ball milling, a foaming-agent technique, or a templating method. All catalyst precursors were subjected to one or more heat treatments at 700-1050 degrees C in an inert or reactive atmosphere. These catalysts underwent an identical set of electrochemical characterizations, including rotating-disk-electrode and polymer-electrolyte membrane fuel cell (PEMFC) tests and voltammetry under N(2). Ex situ characterization was comprised of X-ray photoelectron spectroscopy, neutron activation analysis, scanning electron microscopy, and N(2) adsorption and its analysis with an advanced model for carbonaceous powders. In PEMFC, several NNMCs display mass activities of 10-20 A g(-1) at 0.8 V versus a reversible hydrogen electrode, and one shows 80 A g(-1). The latter value corresponds to a volumetric activity of 19 A cm(-3) under reference conditions and represents one-seventh of the target defined by the U.S. Department of Energy for 2010 (130 A cm(-3)). The activity of all NNMCs is mainly governed by the microporous surface area, and active sites seem to be hosted in pore sizes of 5-15 A. The nitrogen and metal (iron or cobalt) seem to be present in sufficient amounts in the NNMCs and do not limit activity. The paper discusses probable directions for synthesizing more active NNMCs. This could be achieved through multiple pyrolysis steps, ball-milling steps, and control of the powder morphology by the addition of foaming agents and/or sulfur.


Subject(s)
Electrochemistry/methods , Oxygen/chemistry , Polymers/chemistry , Catalysis , Chemistry/methods , Electrodes , Electrolytes , Hydrogen-Ion Concentration , Materials Testing , Models, Statistical , Photoelectron Spectroscopy/methods , Porosity , Powders/chemistry , Surface Properties
17.
Environ Sci Technol ; 40(17): 5193-9, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16999088

ABSTRACT

The performance of oxygen reduction catalysts (platinum, pyrolyzed iron(ll) phthalocyanine (pyr-FePc) and cobalt tetramethoxyphenylporphyrin (pyr-CoTMPP)) is discussed in light of their application in microbial fuel cells. It is demonstrated that the physical and chemical environment in microbial fuel cells severely affects the thermodynamics and the kinetics of the electrocatalytic oxygen reduction. The neutral pH in combination with low buffer capacities and low ionic concentrations strongly affect the cathode performance and limit the fuel cell power output. Thus, the limiting current density in galvanodyanamic polarization experiments decreases from 1.5 mA cm(-2) to 0.6 mA cm(-2) (pH 3.3, E(cathode) = 0 V) when the buffer concentration is decreased from 500 to 50 mM. The cathode limitations are superposed by the increasing internal resistance of the MFC that substantially contributes to the decrease of power output. For example, the maximum power output of a model MFC decreased by 35%, from 2.3 to 1.5 mW, whereas the difference between the electrode potentials (deltaE = E(anode) - E(cathode)) decreased only by 10%. The increase of the catalyst load of pyr-FePc from 0.25 to 2 mg cm(-2) increased the cathodic current density from 0.4 to 0.97 mA cm(-2) (pH 7, 50 mM phosphate buffer). The increase of the load of such inexpensive catalyst thus represents a suitable means to improve the cathode performance in microbial fuel cells. Due to the low concentration of protons in MFCs in comparison to relatively high alkali cation levels (ratio C(Na+,K+)/C(H+) = 5 x E5 in pH 7, 50 mM phosphate buffer) the transfer of alkali ions through the proton exchange membrane plays a major role in the charge-balancing ion flux from the anodic into the cathodic compartment. This leads to the formation of pH gradients between the anode and the cathode compartment.


Subject(s)
Bioelectric Energy Sources , Electrodes , Escherichia coli/metabolism , Oxygen/metabolism , Catalysis , Electrolytes , Hydrogen-Ion Concentration
18.
J Phys Chem B ; 109(35): 16579-86, 2005 Sep 08.
Article in English | MEDLINE | ID: mdl-16853109

ABSTRACT

Carbon-doped TiO2, demonstrated as an efficient photocatalyst in visible light photooxidation of organic compounds, was prepared with different doping concentrations and investigated via differential electrochemical mass spectroscopy (DEMS) and capacitive surface photovoltage (SPV) measurements in the form of thin layer electrodes. In all cases the total photocurrent as well as the surface photovoltage of the doped materials decreased markedly in relation to the undoped one. No detectable oxygen evolved from the doped electrodes in acidic solution under UV-light excitation. Since an oxidation of formic acid is still apparent, it is concluded that this oxidation occurs via isolated, catalytically poorly active trap states within the forbidden energy region. The existence of these states is confirmed by capacitive SPV measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...