Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37445206

ABSTRACT

The distributions of the lattice parameter of the γ'-phase (aγ') and angular components of the primary crystal orientation along the lines parallel to the main axis of the single-crystalline CMSX 4-cored turbine blades were studied. The studies were carried out on the regions of the blades located far from the selector and its continuer extension (CE), positioned asymmetrically relative to the blade's axis. It was found that, similarly to the regions of the blade located close to the CE (studied in part I), at the level of the blade related to the change of its cross-section, there were correlated local changes in aγ' and the angular components of the primary crystal orientation representing the bending of the dendrites. However, the correlation was less clear due to the presence of low-angle boundaries (LABs) and the intensification of the consequences of the "fanning effect" in the regions far from the CE. It was found that the range of local changes in aγ' and the angular components of the primary crystal orientation of the blade regions were influenced by both the distance from the CE and the separation of these regions from the CE by surfaces of the cooling bores. It was found that the deviation angle in the [001] direction from the blade axis increased with an increase in the distance from the CE. Based on the aγ' changes, differences in the alloying element concentration near the cooling bores were discussed.

2.
Materials (Basel) ; 15(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35160726

ABSTRACT

The dendritic structure and the distribution of the γ'-phase lattice parameter (aγ') along selected lines of the longitudinal section in a model single-crystalline blade made of CMSX-4® nickel-based superalloy were studied. It was established that there is a correlation between the value of the aγ' and the predomination of initial or ending fragments of the secondary dendrite arms. It is most noticed for the areas where the dendrite growth conditions are similar to steady. They are located in the center and near the root's selector extension (SE) area. The correlation has been related to the dendritic segregation mechanism. It was shown that in the single-crystalline blades obtained by the directional crystallization using a spiral selector, the "walls" of the primary dendrite arms that grow at a low angle to the blade axis are created. It was found for the first time that the value of the lattice parameter aγ' is decreased near such "walls". Additionally, it was found that competitive growth of the dendrites may occur at a distance of even several millimeters from the bottom surface of the root. The first-time applied X-ray diffraction measurements of aγ' made in a single-pass along the line allow the analysis of the dendritic segregation in the whole blade cast.

3.
Materials (Basel) ; 16(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36614451

ABSTRACT

The γ' lattice parameter aγ' and the α angle defining the primary crystal orientation of the single-crystalline cored turbine blades made of CMSX-4 superalloy were measured in the areas located near the selector situated asymmetrically, considering the top view of the blade. The distributions of the aγ' and the α angle were determined along the lines parallel to the vertical blade axis Z using X-ray diffraction methods. The relations between changes in the aγ'(Z) and α(Z) were analyzed on the Z levels where the shape of the blade's cross-section changes. For the first time, the local increase in aγ'(Z) was found near the root-airfoil connection level and near certain other root levels, which is related to the change in blade section shapes on such levels. The local extremes in α(Z), representing the dendrite bend, were observed at these levels. The increase in the aγ'(Z) with the local bending of dendrites was discussed concerning the local redistribution of alloying elements and local residual stresses of the γ-dendrites. For the first time, a method of analyzing the local bending of the dendrites was proposed by studying the behavior of the α(Z). The presented results concern the first stage of the research covering areas relatively close to the selector, considering the top view of the blades. The second stage will include the analysis of the areas of the blade localized at a longer distance from the selector.

4.
Materials (Basel) ; 14(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34576418

ABSTRACT

The relationship between the angles of misorientation of macroscopic low-angle boundaries (LABs) and changes in the lattice parameter of the γ'-phase around the LABs in the root of single-crystalline (SX) turbine blades made of CMSX-4 superalloy were studied. The blades with an axial orientation of the [001] type were solidified using an industrial Bridgman furnace with a 3 mm/min withdrawal rate. X-ray diffraction topography, the EFG Ω-scan X-ray diffraction method, scanning electron microscopy, and Laue diffraction were used to study the thin lamellar samples with a thickness of 0.5 mm and orientation of the surface perpendicular to the [001] direction. It is found that in the areas with a width of a few millimetres around LABs, decreases in the lattice parameter of the γ'-phase occur. These lattice parameter changes are related to the internal stresses of the γ'-phase caused by local changes in the concentration of alloying elements and/or to the dendrite bending near the LABs. X-ray topography used on two surfaces of thin lamellar samples coupled with the lattice parameter measurements of the γ'-phase near the LAB allows separating the misorientation component of LAB diffraction contrast from the component and visualising the internal stresses of the γ'-phase.

5.
Materials (Basel) ; 14(14)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34300761

ABSTRACT

The areas located near the cooling bores of single-crystalline cored turbine blades made of nickel-based CMSX-4 superalloy were studied. The blades were solidified by the vertical Bridgman technique in the industrial ALD furnace. Longitudinal sections of the blades were studied by Scanning Electron Microscopy, X-ray diffraction topography, X-ray diffraction measurements of the γ'-phase lattice parameter a, and the α angle of the primary crystal orientation. The local changes in α were analyzed in relation to the changes of the dendrite's growth direction near the cooling bores. It was found that in the area approximately 3 ÷ 4 mm wide around the cooling bores, changes of α and a, both in the blade root and in the airfoil occurred. The local temperature distribution near the cooling bores formed a curved macroscopic solidification front, which caused changes in the chemical composition and, consequently, changes in the a value in a range of 0.002 Å to 0.014 Å. The mechanism of alloying elements segregation by tips of the dendrites on the bent solidification front was proposed. The multi-scale analysis that allows determining a relation between processes proceed both on a millimeter-scale and a micrometric and nanometric scale, was applied in the studies.

6.
Materials (Basel) ; 14(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34300881

ABSTRACT

Single-crystalline cored CMSX-4 blades obtained at a withdrawal rate of 3 mm/min by the vertical Bridgman method were analyzed. The dendritic structure and crystal orientation near the cooling bores of the blades were studied through Scanning Electron Microscopy, the X-ray diffraction measurements of α and ß angular components of the primary crystal orientation, and the γ angular component of the secondary crystal orientation. Additionally, the primary arm spacing (PAS) was studied in areas near and far from the cooling bores. It was found that in the area approximately 3-4 mm wide around the cooling bores, changes occurred in the α, ß, and γ angles, as well as in the PAS. The PAS determined for the transverse section of the root and the linear primary arm spacing (LPAS) determined for the longitudinal sections, as well as their relationship, have been defined for the areas located near the cooling bores and those at a distance from them. The vertical temperature gradient of 29.5 K/cm was estimated in the root areas located near the cooling bores based on the PAS values. The value of this gradient was significantly higher compared to the growth chamber operating gradient of 16 K/cm. The two-scale analysis applied in this study allowed for the determination of the relationship between the process of dendrite array creation proceeding on a millimeter scale, which is associated with the local changes in crystal orientation near the cooling bores, and that which proceeds on a scale of tens of millimeters, associated with the changes in crystal orientation in the whole blade cast.

7.
Materials (Basel) ; 14(1)2020 Dec 26.
Article in English | MEDLINE | ID: mdl-33375260

ABSTRACT

The roots of cored single-crystalline turbine blades made of a nickel-based CMSX-4 superalloy were studied. The casts were solidified by the vertical Bridgman method in an industrial ALD furnace using the spiral selector and selector continuer situated asymmetrically in the blade root transverse section. Scanning electron microscopy, the Laue diffraction and X-ray diffraction topography were used to visualize the dendrite array and the local crystal misorientation of the roots. It has been stated that heterogeneity of the dendrite array and creation of low-angle boundaries (LABs) are mostly related to the lateral dendrite branching and rapid growth of the secondary and tertiary dendrites near the surface of the continuer-root connection. These processes have an unsteady character. Additionally, the influence of the mould walls on the dendrite array heterogeneity was studied. The processes of the lateral growth of the secondary dendrites and competitive longitudinal growth of the tertiary dendrites are discussed and a method of reducing the heterogeneity of the root dendrite array is proposed.

8.
Materials (Basel) ; 14(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375104

ABSTRACT

In the present study, the dendrites deflection mechanism from the mold walls were subjected to verification regarding its heat-treated turbine rotor blades. The number of macroscopic low-angle boundaries created on the cross-section of the blades' airfoil near the tip was experimentally determined and compared to the number of low-angle boundaries calculated from a model based on the dendrites deflection mechanism. Based on the Laue patterns and geometrical parameters of airfoils, the number of low-angle boundaries occurring at the upper part of the blades airfoil after heat treatment was calculated. This number for the analyzed group of blades ranged from 5 to 9.

9.
Materials (Basel) ; 12(24)2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31835426

ABSTRACT

The variation of the crystal orientation and the dendrite array generated in the root of the single-crystalline (SX) turbine blades made of CMSX-4 superalloy were studied. The blades with an axial orientation of the [001] type were solidified by the industrial Bridgman technique using a spiral selector at a withdrawal rate of 3 mm/min. The analysis of the crystal orientation and dendrite arrangement was carried out using scanning electron microscopy, X-ray diffraction topography, and Laue diffraction. It was found that the lateral growth of such secondary dendrite arms, which are defined as "leading" and grow in the root at first, is related to the rotation of their crystal lattice, which is the reason for creation of the low-angle boundary (LAB) type defects. The primary crystal orientation of the selector extension (SE) area determines the areas and directions of the lateral growth of the leading arms. Additionally, it was found that in the SE areas of the root, near the connection with the selector, the spatial distribution of the [001]γ' crystallographic direction has a complex wave-like character and may be related to the shape of the crystallization front.

10.
Materials (Basel) ; 12(17)2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31450755

ABSTRACT

The thin-walled airfoil areas of as-cast single-crystalline turbine blades made of CMSX-4 superalloy were studied. The blades were produced by the industrial Bridgman technique at withdrawal rates of 2, 3 and 4 mm/min. The angle between the [001] crystallographic direction and blade axis, related to the primary orientation, was defined by the Ω-scan X-ray diffraction method at points on the camber line located near the tip of an airfoil and at points of a line located in parallel and near the trailing edge. Additionally, primary crystal orientation was determined by Laue diffraction at the selected points of an airfoil. The influence of mould wall inclination on the primary crystal orientation of the thin-walled areas is discussed. The effect of change in the [001] crystallographic direction, named as "force directing", was considered with regard to the arrangement of primary dendrite arms in relation to the trailing edge and the camber line. It was stated that when the distance between the mould walls is less than the critical value of about 1.5 mm the "force directing" increases as the distance between the walls of the mould decreases. The effect may be controlled by selecting an appropriate secondary orientation using a seed crystal in the blade production process. The model of dendrite interaction with the mould walls, including bending and "deflection", was proposed.

11.
Materials (Basel) ; 12(6)2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30875902

ABSTRACT

An analysis of the defects in the vicinity of the selector⁻root connection plane occurring during the creation of single-crystalline turbine blades made of CMSX-6 Ni-based superalloy was performed. X-ray diffraction topography, scanning electron microscopy, and positron annihilation lifetime spectroscopy were used. Comparing the area of undisturbed axial growth of dendrites to the area of lateral growth concluded that the low-angle boundaries-like (LAB-like) defects were created in the root as a result of unsteady-state lateral growth of some secondary dendrite arms in layers of the root located directly at the selector⁻root connection plane. Additional macroscopic low-angle boundaries (LABs) with higher misorientation angles were created as a result of concave curvatures of liquidus isotherm in platform-like regions near selector⁻root connections. Two kinds of vacancy-type defects, mono-vacancies and vacancy clusters, were determined in relation to the LABs and LAB-like defects. Only mono-vacancies appeared in the areas of undisturbed axial growth. Reasons for the creation of macroscopic LABs and LAB-like defects, and their relationships with vacancy-type defects were discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...