Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339670

ABSTRACT

The continuous monitoring of soil water content is commonly carried out using low-frequency capacitance sensors that require a site-specific calibration to relate sensor readings to apparent dielectric bulk permittivity (Kb) and soil water content (θ). In fine-textured soils, the conversion of Kb to θ is still challenging due to temperature effects on the bound water fraction associated with clay mineral surfaces, which is disregarded in factory calibrations. Here, a multi-point calibration approach accounts for temperature effects on two soils with medium to high clay content. A calibration strategy was developed using repacked soil samples in which the Kb-θ relationship was determined for temperature (T) steps from 10 to 40 °C. This approach was tested using the GS3 and TEROS-12 sensors (METER Group, Inc. Pullman, WA, USA; formerly Decagon Devices). Kb is influenced by T in both soils with contrasting T-Kb relationships. The measured data were fitted using a linear function θ = aKb + b with temperature-dependent coefficients a and b. The slope, a(T), and intercept, b(T), of the loam soil were different from the ones of the clay soil. The consideration of a temperature correction resulted in low RMSE values, ranging from 0.007 to 0.033 cm3 cm-3, which were lower than the RMSE values obtained from factory calibration (0.046 to 0.11 cm3 cm-3). However, each experiment was replicated only twice using two different sensors. Sensor-to-sensor variability effects were thus ignored in this study and will be systematically investigated in a future study. Finally, the applicability of the proposed calibration method was tested at two experimental sites. The spatial-average θ from a network of GS3 sensors based on the new calibration fairly agreed with the independent area-wide θ from the Cosmic Ray Neutron Sensor (CRNS). This study provided a temperature-corrected calibration to increase the accuracy of commercial sensors, especially under dry conditions, at two experimental sites.

2.
Sensors (Basel) ; 23(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37514878

ABSTRACT

Soil moisture profile sensors (SMPSs) have a high potential for climate-smart agriculture due to their easy handling and ability to perform simultaneous measurements at different depths. To date, an accurate and easy-to-use method for the evaluation of long SMPSs is not available. In this study, we developed laboratory and field experiments to evaluate three different SMPSs (SoilVUE10, Drill&Drop, and SMT500) in terms of measurement accuracy, sensor-to-sensor variability, and temperature stability. The laboratory experiment features a temperature-controlled lysimeter to evaluate intra-sensor variability and temperature stability of SMPSs. The field experiment features a water level-controlled sandbox and reference TDR measurements to evaluate the soil water measurement accuracy of the SMPS. In both experiments, a well-characterized fine sand was used as measurement medium to ensure homogeneous dielectric properties in the measurement domain of the sensors. The laboratory experiments with the lysimeter showed that the Drill&Drop sensor has the highest temperature sensitivity with a decrease of 0.014 m3 m-3 per 10 °C, but at the same time showed the lowest intra- and inter-sensor variability. The field experiment with the sandbox showed that all three SMPSs have a similar performance (average RMSE ≈ 0.023 m3 m-3) with higher uncertainties at intermediate soil moisture contents. The presented combination of laboratory and field tests were found to be well suited to evaluate the performance of SMPSs and will be used to test additional SMPSs in the future.

3.
Sensors (Basel) ; 23(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36904581

ABSTRACT

Due to their unique characteristics, cosmic-ray neutron sensors (CRNSs) have potential in monitoring and informing irrigation management, and thus optimising the use of water resources in agriculture. However, practical methods to monitor small, irrigated fields with CRNSs are currently not available and the challenges of targeting areas smaller than the CRNS sensing volume are mostly unaddressed. In this study, CRNSs are used to continuously monitor soil moisture (SM) dynamics in two irrigated apple orchards (Agia, Greece) of ~1.2 ha. The CRNS-derived SM was compared to a reference SM obtained by weighting a dense sensor network. In the 2021 irrigation period, CRNSs could only capture the timing of irrigation events, and an ad hoc calibration resulted in improvements only in the hours before irrigation (RMSE between 0.020 and 0.035). In 2022, a correction based on neutron transport simulations, and on SM measurements from a non-irrigated location, was tested. In the nearby irrigated field, the proposed correction improved the CRNS-derived SM (from 0.052 to 0.031 RMSE) and, most importantly, allowed for monitoring the magnitude of SM dynamics that are due to irrigation. The results are a step forward in using CRNSs as a decision support system in irrigation management.

4.
Sensors (Basel) ; 22(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36560160

ABSTRACT

In recent years, wireless sensor network (WSN) technology has emerged as an important technique for wireless sensing of soil moisture from the field to the catchment scale. This review paper presents the current status of wireless sensor network (WSN) technology for distributed, near real-time sensing of soil moisture to investigate seasonal and event dynamics of soil moisture patterns. It is also discussed how WSN measurements of soil measurements contribute to the validation and downscaling of satellite data and non-invasive geophysical instruments as well as the validation of distributed hydrological models. Finally, future perspectives for WSN measurements of soil moisture are highlighted, which includes the improved integration of real-time WSN measurements with other information sources using the latest wireless communication techniques and cyberinfrastructures.


Subject(s)
Remote Sensing Technology , Soil , Soil/chemistry , Remote Sensing Technology/methods , Agriculture/methods , Wireless Technology
5.
Sensors (Basel) ; 22(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36501844

ABSTRACT

Cosmic ray neutron sensors (CRNS) are increasingly used to determine field-scale soil moisture (SM). Uncertainty of the CRNS-derived soil moisture strongly depends on the CRNS count rate subject to Poisson distribution. State-of-the-art CRNS signal processing averages neutron counts over many hours, thereby accounting for soil moisture temporal dynamics at the daily but not sub-daily time scale. This study demonstrates CRNS signal processing methods to improve the temporal accuracy of the signal in order to observe sub-daily changes in soil moisture and improve the signal-to-noise ratio overall. In particular, this study investigates the effectiveness of the Moving Average (MA), Median filter (MF), Savitzky-Golay (SG) filter, and Kalman filter (KF) to reduce neutron count error while ensuring that the temporal SM dynamics are as good as possible. The study uses synthetic data from four stations for measuring forest ecosystem-atmosphere relations in Africa (Gorigo) and Europe (SMEAR II (Station for Measuring Forest Ecosystem-Atmosphere Relations), Rollesbroich, and Conde) with different soil properties, land cover and climate. The results showed that smaller window sizes (12 h) for MA, MF and SG captured sharp changes closely. Longer window sizes were more beneficial in the case of moderate soil moisture variations during long time periods. For MA, MF and SG, optimal window sizes were identified and varied by count rate and climate, i.e., estimated temporal soil moisture dynamics by providing a compromise between monitoring sharp changes and reducing the effects of outliers. The optimal window for these filters and the Kalman filter always outperformed the standard procedure of simple 24-h averaging. The Kalman filter showed its highest robustness in uncertainty reduction at three different locations, and it maintained relevant sharp changes in the neutron counts without the need to identify the optimal window size. Importantly, standard corrections of CRNS before filtering improved soil moisture accuracy for all filters. We anticipate the improved signal-to-noise ratio to benefit CRNS applications such as detection of rain events at sub-daily resolution, provision of SM at the exact time of a satellite overpass, and irrigation applications.


Subject(s)
Ecosystem , Soil , Water/analysis , Rain , Climate
6.
Sensors (Basel) ; 21(3)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499172

ABSTRACT

Affordable and accurate weather monitoring systems are essential in low-income and developing countries and, more recently, are needed in small-scale research such as precision agriculture and urban climate studies. A variety of low-cost solutions are available on the market, but the use of non-standard technologies raises concerns for data quality. Research-grade all-in-one weather stations could present a reliable, cost effective solution while being robust and easy to use. This study evaluates the performance of the commercially available ATMOS41 all-in-one weather station. Three stations were deployed next to a high-performance reference station over a three-month period. The ATMOS41 stations showed good performance compared to the reference, and close agreement among the three stations for most standard weather variables. However, measured atmospheric pressure showed uncertainties >0.6 hPa and solar radiation was underestimated by 3%, which could be corrected with a locally obtained linear regression function. Furthermore, precipitation measurements showed considerable variability, with observed differences of ±7.5% compared to the reference gauge, which suggests relatively high susceptibility to wind-induced errors. Overall, the station is well suited for private user applications such as farming, while the use in research should consider the limitations of the station, especially regarding precise precipitation measurements.

7.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190524, 2020 10 26.
Article in English | MEDLINE | ID: mdl-32892732

ABSTRACT

Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO2 exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004-2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO2 uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Subject(s)
Atmosphere/analysis , Climate Change , Droughts , Farms , Forests , Grassland , Wetlands , Europe
8.
Sensors (Basel) ; 19(14)2019 Jul 13.
Article in English | MEDLINE | ID: mdl-31337053

ABSTRACT

Soil water content (SWC) monitoring is often used to optimize agricultural irrigation. Commonly, capacitance sensors are used for this task. However, the factory calibrations have been often criticized for their limited accuracy. The aim of this paper is to test the degree of improvement of various sensor- and soil-specific calibration options compared to factory calibrations by taking the 10HS sensor as an example. To this end, a two-step sensor calibration was carried out. In the first step, the sensor response was related to dielectric permittivity using calibration in media with well-defined permittivity. The second step involved the establishment of a site-specific relationship between permittivity and soil water content using undisturbed soil samples and time domain reflectometry (TDR) measurements. Our results showed that a model, which considered the mean porosity and a fitted dielectric permittivity of the solid phase for each soil and depth, provided the best fit between bulk permittivity and SWC. Most importantly, it was found that the two-step calibration approach (RMSE: 1.03 vol.%) provided more accurate SWC estimates compared to the factory calibration (RMSE: 5.33 vol.%). Finally, we used these calibrations on data from drip-irrigated almond and apple orchards and compared the factory calibration with our two-step calibration approach.

9.
Sensors (Basel) ; 17(1)2017 Jan 21.
Article in English | MEDLINE | ID: mdl-28117731

ABSTRACT

Soil water content is a key variable for understanding and modelling ecohydrological processes. Low-cost electromagnetic sensors are increasingly being used to characterize the spatio-temporal dynamics of soil water content, despite the reduced accuracy of such sensors as compared to reference electromagnetic soil water content sensing methods such as time domain reflectometry. Here, we present an effective calibration method to improve the measurement accuracy of low-cost soil water content sensors taking the recently developed SMT100 sensor (Truebner GmbH, Neustadt, Germany) as an example. We calibrated the sensor output of more than 700 SMT100 sensors to permittivity using a standard procedure based on five reference media with a known apparent dielectric permittivity (1 < Ka < 34.8). Our results showed that a sensor-specific calibration improved the accuracy of the calibration compared to single "universal" calibration. The associated additional effort in calibrating each sensor individually is relaxed by a dedicated calibration setup that enables the calibration of large numbers of sensors in limited time while minimizing errors in the calibration process.

SELECTION OF CITATIONS
SEARCH DETAIL
...