Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Front Vet Sci ; 8: 621699, 2021.
Article in English | MEDLINE | ID: mdl-34222391

ABSTRACT

While both human and animal trypanosomiasis continue to present as major human and animal public health constraints globally, detailed analyses of trypanosome wildlife reservoir hosts remain sparse. African animal trypanosomiasis (AAT) affects both livestock and wildlife carrying a significant risk of spillover and cross-transmission of species and strains between populations. Increased human activity together with pressure on land resources is increasing wildlife-livestock-human infections. Increasing proximity between human settlements and grazing lands to wildlife reserves and game parks only serves to exacerbate zoonotic risk. Communities living and maintaining livestock on the fringes of wildlife-rich ecosystems require to have in place methods of vector control for prevention of AAT transmission and for the treatment of their livestock. Major Trypanosoma spp. include Trypanosoma brucei rhodesiense, Trypanosoma brucei gambiense, and Trypanosoma cruzi, pathogenic for humans, and Trypanosoma vivax, Trypanosoma congolense, Trypanosoma evansi, Trypanosoma brucei brucei, Trypanosoma dionisii, Trypanosoma thomasbancrofti, Trypanosma elephantis, Trypanosoma vegrandis, Trypanosoma copemani, Trypanosoma irwini, Trypanosoma copemani, Trypanosoma gilletti, Trypanosoma theileri, Trypanosoma godfreyi, Trypansoma simiae, and Trypanosoma (Megatrypanum) pestanai. Wildlife hosts for the trypansomatidae include subfamilies of Bovinae, Suidae, Pantherinae, Equidae, Alcephinae, Cercopithecinae, Crocodilinae, Pteropodidae, Peramelidae, Sigmodontidae, and Meliphagidae. Wildlife species are generally considered tolerant to trypanosome infection following centuries of coexistence of vectors and wildlife hosts. Tolerance is influenced by age, sex, species, and physiological condition and parasite challenge. Cyclic transmission through Glossina species occurs for T. congolense, T. simiae, T. vivax, T. brucei, and T. b. rhodesiense, T. b. gambiense, and within Reduviid bugs for T. cruzi. T. evansi is mechanically transmitted, and T. vixax is also commonly transmitted by biting flies including tsetse. Wildlife animal species serve as long-term reservoirs of infection, but the delicate acquired balance between trypanotolerance and trypanosome challenge can be disrupted by an increase in challenge and/or the introduction of new more virulent species into the ecosystem. There is a need to protect wildlife, animal, and human populations from the infectious consequences of encroachment to preserve and protect these populations. In this review, we explore the ecology and epidemiology of Trypanosoma spp. in wildlife.

2.
Front Nutr ; 8: 592340, 2021.
Article in English | MEDLINE | ID: mdl-33644107

ABSTRACT

In this study, we initiated an effort to generate information about beef safety in Uganda. Our entry point was to assess by atomic absorption spectrophotometry the levels of essential elements copper (Cu), cobalt (Co), iron (Fe) and zinc (Zn), and non-essential elements lead (Pb), chromium (Cr), nickel (Ni), and cadmium (Cd) in 40 beef samples collected from within and around Soroti (Uganda). The information was used to evaluate the safety of consuming such beef against the World Health Organization (WHO) limits. The latter was accomplished by (i) estimating the daily intake (EDI) of each metal in the study area, (ii) modeling the non-cancer health risk using the target hazard quotient (THQ) and (iii) modeling the cancer risk using the incremental lifetime cancer risk (ILCR). The study finds that the mean concentrations (±95% CI) and EDI were in the order of Fe > Zn > Cr > Ni > Pb > Co > Cu > Cd. Cancer risk was found to be due to Ni > Cr > Cd > Pb and significantly higher in children than adults. The latter particularly demonstrates the importance of Ni poisoning in the study area. Overall, while essential elements in our beef samples were below WHO limits (hence no health risks), non-essential elements had high health and cancer risks due to higher levels of Cr and Ni.

4.
J Environ Public Health ; 2020: 8516105, 2020.
Article in English | MEDLINE | ID: mdl-32565841

ABSTRACT

Background: Community consumption of herbal plants in developing countries is a common practice, however, scarcity of information on their physiochemical composition is a major public health concern. In Uganda, Vernonia amygdalina is of interest in rural communities due to its therapeutical action on both bacterial and protozoal parasites, however no studies have been conducted to assess the heavy metal concentrations in traditional plants used in alternative medicine. The aim of the study was to establish concentrations of heavy metals in Vernonia amygdalina, model the estimated daily intake (EDI), and assess both the non-cancer-related health risk using the target hazard quotient (THQ), and the risk related to cancer through the incremental lifetime cancer risk (ILCR) for the Ugandan population. Methods: Leaves of Vernonia amygdalina were collected from 20 georeferenced villages and processed into powder in the laboratory using standard methods. These were then analyzed in the laboratory using an atomic absorption spectrometer for lead (Pb), chromium (Cr), copper (Cu), zinc (Zn), cobalt (Co), iron (Fe), cadmium (Cd), and nickel (Ni). Concentrations were compared against the World Health Organization (WHO) limits. The EDI, THQ, and ILCR were modelled and significance was measured at 95% confidence. Results: The study showed that mean ± SEM concentrations of heavy metals were highest in the order of Cr, 121.8 ± 4.291 ppm > Ni, 84.09 ± 2.725 ppm > Zn, 53.87 ± 2.277 ppm > Pb, 40.61 ± 3.891 ppm > Cu, 28.75 ± 2.202 ppm > Fe, 14.15 ± 0.7271 ppm > Co, 7.923 ± 0.7674 ppm > Cd, 0.1163 ± 0.005714 ppm. Concentrations of Pb, Cr, Zn, Co, and Ni were significantly higher than the WHO limits. The EDI was significantly higher in children than in adults, demonstrating an increased risk of toxicity in children. The THQ and ILCR were over 1000 times higher in all Ugandans, demonstrating the undesirable health risks following oral consumption of Vernonia amygdalina due to very high Cr and Ni toxicities, respectively. Conclusion: Consumption of raw Vernonia amygdalina was associated with a high carcinogenic risk, demonstrating a need to enact policies to promote physiochemical screening of herbal medicines used in developing countries against toxic compounds.


Subject(s)
Dietary Exposure/analysis , Food Contamination/analysis , Plants, Medicinal/chemistry , Vernonia/chemistry , Adult , Carcinogens/analysis , Carcinogens/toxicity , Child , Dietary Exposure/standards , Humans , Metals, Heavy/analysis , Metals, Heavy/toxicity , Plants, Medicinal/toxicity , Risk Assessment , Uganda , Vernonia/toxicity
6.
PLoS One ; 14(8): e0220843, 2019.
Article in English | MEDLINE | ID: mdl-31461453

ABSTRACT

The importance of probiotics in swine production is widely acknowledged as crucial. However, gaps still remain in the exact roles played by probiotics in modulation of gut microbiota and immune response. This study determined the roles of probiotic Lactobacillus plantarum strain JDFM LP11in gut microbiota modulation and immune response in weaned piglets. L. plantarum JDFM LP11 increased the population of lactic acid bacteria in feces and enhanced the development of villi in the small intestine. Metagenome analysis showed that microbial diversity and richness (Simpson, Shannon, ACE, Chao1) and the relative abundance of the Firmicutes were higher in weaned piglets fed probiotics. Five bacterial families were different in the relative abundance, especially; Prevotellaceae occupied the largest part of microbial community showed the most difference between two groups. Transcriptome analysis identified 25 differentially expressed genes using RNA-sequencing data of the ileum. Further gene ontology and immune DB analysis determined 8 genes associated with innate defense response and cytokine production. BPI, RSAD2, SLPI, LUM, OLFM4, DMBT1 and C6 genes were down-regulated by probiotic supplementation except PLA2G2A. PICRUSt analysis predicting functional profiling of microbial communities indicated branched amino acid biosynthesis and butyrate metabolism promoting gut development and health were increased by probiotics. Altogether, our data suggest that L. plantarum JDFM LP11 increases the diversity and richness in the microbial community, and attenuates the ileal immune gene expression towards gut inflammation, promoting intestinal development in weaned piglets.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus plantarum/immunology , Probiotics , Swine/immunology , Animal Feed/microbiology , Animals , Female , Immunity , Probiotics/pharmacology , Swine/microbiology
7.
Korean J Food Sci Anim Resour ; 38(5): 878-888, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30479496

ABSTRACT

In the current study, the probiotic potential of approximately 250 strains of lactic acid bacteria (LAB) isolated from piglet fecal samples were investigated; among them Lactobacillus plantarum strain JDFM LP11, which possesses significant probiotic potential, with enhanced acid/bile tolerance, attachment to porcine intestinal epithelial cells (IPEC-J2), and antimicrobial activity. The genetic characteristics of strain JDFM LP11 were explored by performing whole genome sequencing (WGS) using a PacBio system. The circular draft genome have a total length of 3,206,883 bp and a total of 3,021 coding sequences were identified. Phylogenetically, three genes, possibly related to survival and metabolic activity in the porcine host, were identified. These genes encode p60, lichenan permease IIC component, and protein TsgA, which are a putative endopeptidase, a component of the phosphotransferase system (PTS), and a major facilitator in the gut environment, respectively. Our findings suggest that understanding the functional and genetic characteristics of L. plantarum strain JDFM LP11, with its candidate genes for gut health, could provide new opportunities and insights into applications in the animal food and feed additive industries.

SELECTION OF CITATIONS
SEARCH DETAIL
...