Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Gen Comp Endocrinol ; 348: 114434, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38142842

ABSTRACT

Atlantic salmon (Salmo salar) broodstock recruits are normally fed a specialized diet with a higher content of essential nutrients for a limited time period prior to fasting and transfer to freshwater. Typically, this period lasts for about six months, but may vary among producers. Reduced use of marine ingredients in commercial salmon diets during the last decades has affected the content of essential nutrients, such as n-3 long chained polyunsaturated fatty acids (LC-PUFA), minerals and vitamins. Furthermore, to minimize the risk of losses and implement new breeding achievements faster, breeding companies have shortened the production cycle of broodstock from 4 to 3 years, which may affect the number of fish that are large enough to mature. In the present study, we have extended the broodstock feeding period from 6 to 15 months prior to the freshwater transfer giving a higher content of n-3 LC-PUFA (higher inclusion of marine oils) from February to December (Phase 1), and thereafter a diet with a higher energy content to ensure growth towards the spring and maturation (Phase 2). Four sea cages with approximately 80.000 salmon postsmolt, two sea cages with males and two with females, were given a control diet and an experimental diet. Samples were taken in Phase 1 at start (1.7 kg), mid (3.4 kg) and end Phase 1/start of Phase 2 (8.3 kg), and end of Phase 2 (13.4 kg). The fish were thereafter fasted, and selected fish transferred to landbased freshwater tanks where light and temperature were used to manipulate the spawning time of the fish in two groups (early or late). Due to disease in the facility, measures of egg quality and hatching were only obtained from the early group. During the trial and spawning period, biometrical measurements were recorded, and samples of liver, gonad, fillet and red blood cells (RBC) were collected for fatty acid composition and blood plasma for analysis of lipid and health-related parameters. Samples were also collected for gonadal transcriptomic analysis by microarray and qPCR (end Phase 2) and plasma steroids (end Phase 2, mid maturation and spawning). Males fed the test diet had a larger body size compared to the control group at the end of Phase 2, while no differences were observed between dietary groups for the females. Total mortality in the trial was lower in the test group compared to the control, losses were caused mainly by sea lice treatments, loser fish or cardiomyopathy syndrome (CMS). The dietary LC-PUFA levels in the test diet were reflected in the tissues particularly during Phase 1, but only different in the fillet samples and eggs at the end of Phase 2 and at spawning. Plasma sex steroids content increased at mid maturation and showed lower levels of androgens and estrogens in females fed the test diet compared to the control. At the end of Phase 2, transcriptional analysis showed upregulation of steroidogenic enzymes, although not reflected in changes in plasma steroids in Phase 2, indicating changes to come during maturation. The differences in LC-PUFA content in tissues and plasma steroids did not appear to affect fecundity, sperm quality, egg survival or hatching rate, but the test group had larger eggs compared to the control in the early spawner-group. Prolonged feeding of n-3 LC-PUFA to pre-puberty Atlantic salmon broodstock appears to be important for higher survival in challenging sea cage environments and has an effect on sex steroid production that, together with high energy diet during early maturation, cause the test group to produce larger eggs.


Subject(s)
Fatty Acids, Omega-3 , Salmo salar , Animals , Female , Male , Sexual Maturation , Semen , Fatty Acids , Diet/veterinary , Steroids , Animal Feed/analysis
2.
Int J Mol Sci ; 24(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37373473

ABSTRACT

Omnipresent microplastics (MPs) in marine ecosystems are ingested at all trophic levels and may be a vector for the transfer of persistent organic pollutants (POPs) through the food web. We fed rotifers polyethylene MPs (1-4 µm) spiked with seven congeners of polychlorinated biphenyls (PCBs) and two congeners of polybrominated diphenyl ethers (PBDEs). In turn, these rotifers were fed to cod larvae from 2-30 days post-hatching (dph), while the control groups were fed rotifers without MPs. After 30 dph, all the groups were fed the same feed without MPs. Whole-body larvae were sampled at 30 and 60 dph, and four months later the skin of 10 g juveniles was sampled. The PCBs and PBDEs concentrations were significantly higher in MP larvae compared to the control larvae at 30 dph, but the significance dissipated at 60 dph. Expression of stress-related genes in cod larvae at 30 and 60 dph showed inconclusive minor random effects. The skin of MP juveniles showed disrupted epithelial integrity, fewer club cells and downregulation of a suite of genes involved in immunity, metabolism and the development of skin. Our study showed that POPs were transferred through the food web and accumulated in the larvae, but that the level of pollutants decreased once the exposure was ceased, possibly related to growth dilution. Considering the transcriptomic and histological findings, POPs spiked to MPs and/or MPs themselves may have long-term effects in the skin barrier defense system, immune response and epithelium integrity, which may potentially reduce the robustness and overall fitness of the fish.


Subject(s)
Environmental Pollutants , Gadus morhua , Polychlorinated Biphenyls , Rotifera , Water Pollutants, Chemical , Animals , Polychlorinated Biphenyls/toxicity , Gadus morhua/metabolism , Halogenated Diphenyl Ethers/toxicity , Plastics/metabolism , Larva/metabolism , Microplastics/toxicity , Ecosystem , Environmental Pollutants/metabolism , Water Pollutants, Chemical/metabolism
3.
Mar Pollut Bull ; 187: 114528, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608474

ABSTRACT

In the present study, polyethylene (PE) microplastics (150-300 µm) were added to Atlantic cod (Gadus morhua) feeds at 1 %, either in their present form (Virgin PE) or spiked with PCB-126 (Spiked PE). The feeds were given to juvenile cod for a 4-week period. The fish grew from 11 to 23 g with no significant difference between dietary treatments. Cod fed spiked PE showed a significantly higher concentration of PCB-126 in liver and muscle samples compared to control and fish ingesting virgin PE. In accordance with the accumulation of PCB-126 in the liver, the expression of hepatic cyp1a was higher in cod fed spiked PE. Notably, we observed that spiked PE, as well as virgin PE, have an effect on skin. Overall changes indicated a reduced skin barrier in fish fed a diet containing PE. Indicating that PE itself through interaction with gut tissue may influence skin health in fish.


Subject(s)
Gadus morhua , Animals , Plastics/metabolism , Microplastics , Polyethylene/metabolism , Liver/metabolism , Fishes/metabolism , Muscles
4.
Chemosphere ; 265: 129144, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33293050

ABSTRACT

A tube-feeding model for administering microplastic (MP, Ø = 30 µm) spheres to fish larvae was employed to quantify the uptake of hydrophobic organic contaminants (HOCs) into the larval body through a single administration of MP. Polychlorinated biphenyl-153 (PCB-153) was used as a representative HOC that can be sorbed to MP in the sea. Atlantic herring (Clupea harengus) larvae (34-51 days post-hatching) were selected as the animal model. The herring larvae were tube-fed a single load of up to 200 polystyrene or polyethylene MP spheres spiked with 14C-labelled PCB-153, and the control larvae were tube-fed an isotonic solution without MP. At the time of sampling (24 h post feeding), some larvae had evacuated all MP spheres from the gut, while others still had MP remaining in the gut. In larvae with a significant number of MP spheres still present in the gut, whole-body scintillation counting (including the MP in the gut lumen) showed elevated levels of the tracer compared to those in the control fish larvae. For larvae in which all or almost all MP had been evacuated by the time of sampling, the tracer levels of the whole body were not significantly different compared to those for the control fish larvae. These data indicate that there was no significant transfer of PCB-153 from contaminated MP into fish larvae within a gut-transit time of <24 h. This study suggests that the vector role of MP in HOC uptake and absorption may be minor compared to that of other HOC uptake pathways.


Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Fishes , Larva , Microplastics , Plastics , Water Pollutants, Chemical/analysis
5.
Front Genet ; 11: 575237, 2020.
Article in English | MEDLINE | ID: mdl-33193686

ABSTRACT

With the expansion of the aquaculture industry in the last two decades, there has been a large increase in the use of plant ingredients in aquafeeds, which has created new challenges in fish growth, health and welfare. Fish muscle growth is an important trait that is strongly affected by diet, but our knowledge on the effect of plant protein-based diets on global gene expression in muscle is still scant. The present study evaluated nutrigenomic effects of the inclusion of proteins from pea, soy and wheat into aquafeeds, compared to a control diet with fishmeal as the main protein source using the zebrafish model by RNA-seq; these results were extended to an important aquaculture species by analyzing selected differentially expressed genes identified in the zebrafish model on on-growing Atlantic salmon fed with equivalent plant protein-based diets. Expression of selected Atlantic salmon paralogues of the zebrafish homologs was analyzed using paralogue-specific qPCR assays. Global gene expression changes in muscle of zebrafish fed with plant-based diets were moderate, with the highest changes observed in the soy diet-fed fish, and no change for the pea diet-fed fish compared to the control diet. Among the differentially expressed genes were mylpfb, hsp90aa1.1, col2a1a, and odc1, which are important in regulating muscle growth, maintaining muscle structure and function, and muscle tissue homeostasis. Furthermore, those genes and their paralogues were differentially expressed in Atlantic salmon fed with the equivalent percentage of soy or wheat protein containing diets. Some of these genes were similarly regulated in both species while others showed species-specific regulation. The present study expands our understanding on the molecular effects of plant ingredients in fish muscle. Ultimately, the knowledge gained would be of importance for the improved formulation of sustainable plant-based diets for the aquaculture industry.

6.
Genes (Basel) ; 11(11)2020 11 12.
Article in English | MEDLINE | ID: mdl-33198292

ABSTRACT

Feed safety is a necessity for animal health and welfare as well as prerequisite for food safety and human health. Wheat gluten (WG) is considered as a valuable protein source in fish feed due to its suitability as a feed binder, high digestibility, good amino acid profile, energy density and most importantly, due to its relatively low level of anti-nutritional factors (ANFs). The main aim of this study was to identify the impact of dietary WG on salmon health by analysing growth, feed efficiency and the hepatic and intestinal transcriptomes. The fish were fed either control diet with fishmeal (FM) as the only source of protein or diets, where 15% or 30% of the FM were replaced by WG. The fish had a mean initial weight of 223 g and approximately doubled their weight during the 9-week experiment. Salmon fed on 30% WG showed reduced feed intake compared to the 15% and FM fed groups. The liver was the less affected organ but fat content and activities of the liver health markers in plasma increased with the inclusion level of WG in the diet. Gene expression analysis showed significant changes in both, intestine and liver of fish fed with 30% WG. Especially noticeable were changes in the lipid metabolism, in particular in relation to the intestinal lipoprotein transport and sterol metabolism. Moreover, the intestinal transcriptome of WG-fed fish showed shifts in the expression of a large number of genes responsible for immunity and tissue structure and integrity. These observations implied that the fish receiving WG-containing diet were undergoing nutritional stress. Overall, the study provided evidence that a high dietary level of WG can have a negative impact on the intestinal and liver health of salmon with symptoms similar to gluten sensitivity in humans.


Subject(s)
Animal Feed/adverse effects , Glutens , Intestines/physiology , Salmo salar/genetics , Wheat Hypersensitivity/genetics , Animals , Aquaculture , Blood Chemical Analysis , Liver/physiology , Salmo salar/growth & development , Triticum , Wheat Hypersensitivity/veterinary
7.
PLoS One ; 15(10): e0240307, 2020.
Article in English | MEDLINE | ID: mdl-33091018

ABSTRACT

The research objective was to study the presence of DNA damages in haddock exposed to petrogenic or pyrogenic polyaromatic hydrocarbons (PAHs) from different sources: 1) extracts of oil produced water (PW), dominated by 2-ring PAHs; 2) distillation fractions of crude oil (representing oil-based drilling mud), dominated by 3-ring PAHs; 3) heavy pyrogenic PAHs, mixture of 4/5/6-ring PAHs. The biological effect of the different PAH sources was studied by feeding juvenile haddock with low doses of PAHs (0.3-0.7 mg PAH/kg fish/day) for two months, followed by a two-months recovery. In addition to the oral exposure, a group of fish was exposed to 12 single compounds of PAHs (4/5/6-ring) via intraperitoneal injection. The main endpoint was the analysis of hepatic and intestinal DNA adducts. In addition, PAH burden in liver, bile metabolites, gene and protein expression of CYP1A, GST activity, lipid peroxidation, skeletal deformities and histopathology of livers were evaluated. Juvenile haddock responded quickly to both intraperitoneal injection and oral exposure of 4/5/6-ring PAHs. High levels of DNA adducts were detected in livers three days after the dose of the single compound exposure. Fish had also high levels of DNA adducts in liver after being fed with extracts dominated by 2-ring PAHs (a PW exposure scenario) and 3-ring PAHs (simulating an oil exposure scenario). Elevated levels of DNA adducts were observed in the liver of all exposed groups after the 2 months of recovery. High levels of DNA adduct were found also in the intestines of individuals exposed to oil or heavy PAHs, but not in the PW or control groups. This suggests that the intestinal barrier is very important for detoxification of orally exposures of PAHs.


Subject(s)
DNA Damage , Gadiformes/growth & development , Polycyclic Aromatic Hydrocarbons/toxicity , Soil Pollutants/toxicity , Water Pollutants, Chemical/toxicity , Administration, Oral , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Gadiformes/genetics , Gene Expression Regulation, Developmental/drug effects , Infusions, Parenteral , Intestines/chemistry , Liver/chemistry , Petroleum , Petroleum Pollution , Polycyclic Aromatic Hydrocarbons/administration & dosage , Soil Pollutants/administration & dosage , Water Pollutants, Chemical/administration & dosage
8.
PLoS One ; 15(5): e0233322, 2020.
Article in English | MEDLINE | ID: mdl-32469895

ABSTRACT

The importance of dietary lipids in male reproduction are not as well understood as in females, in which dietary lipids, such as phospholipids (PL) and associated fatty acids (FA), are important structural components of the eggs and provide energy for their offspring. In mammals, lipids are suggested to be important for spermatogenesis and to structural components of the spermatozoa that could improve fertilization rates. New knowledge of how lipids affect sexual maturation in male Atlantic salmon (Salmo salar), an important global aquaculture species, could provide tools to delay maturation and/or improve reproductive success. Therefore, changes in testicular composition of lipids and gene transcripts associated with spermatogenesis and lipid metabolism were studied in sexually maturing male salmon compared to immature males and females. An increase in total testis content of FA and PL, and a shift to higher PL composition was observed in maturing males, concomitant with increases in mRNA levels for genes involved in spermatogenesis, FA uptake and synthesis, and production of long chain-polyunsaturated fatty acids (LC-PUFA) and PL. A particularly interesting finding was elevated testis expression of acyl-CoA synthetase 4 (acsl4), and acyl-CoA thioesterase 2 (acot2), critical enzymes that regulate intra-mitochondrial levels of 20:4n-6 FA (arachidonic acid), which have been associated with improved cholesterol transport during steroidogenesis. This suggested that FA may have direct effects on sex steroid production in salmon. Furthermore, we observed increased testis expression of genes for endogenous synthesis of 16:0 and elongation/desaturation to 22:6n-3 (docosahexaenoic acid) in sexually maturing males relative to immature fish. Both of these FA are important structural components of the PL, phosphatidylcholine (PC), and were elevated concomitant with increases in the content of phosphatidic acid, an important precursor for PC, in maturing males compared to immature fish. Overall, this study suggests that, similar to mammals, lipids are important to spermatogenesis and serve as structural components during testicular growth and maturation in Atlantic salmon.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Fish Proteins/metabolism , Gene Expression Regulation , Phospholipids/metabolism , Salmo salar/metabolism , Sexual Maturation , Testis/metabolism , Animals , Fatty Acid Desaturases/genetics , Female , Fish Proteins/genetics , Gene Expression Profiling , Male , Salmo salar/genetics , Testis/cytology
9.
Toxins (Basel) ; 11(4)2019 04 13.
Article in English | MEDLINE | ID: mdl-31013949

ABSTRACT

New protein sources in fish feed require the assessment of the carry-over potential of contaminants and anti-nutrients from feed ingredients into the fish, and the assessment of possible health risks for consumers. Presently, plant materials including wheat and legumes make up the largest part of aquafeeds, so evaluation of the transfer capabilities of typical toxic metabolites from plant-infesting fungi and of vegetable phytoestrogens into fish products is of great importance. With the aim of facilitating surveillance of relevant mycotoxins and isoflavones, we have developed and validated a multi-analyte LC-HRMS/MS method that can be used to ensure compliance to set maximum levels in feed and fish. The method performance characteristics were determined, showing high specificity for all 25 targeted analytes, which included 19 mycotoxins and three isoflavones and their corresponding aglycons with sufficient to excellent sensitivities and uniform analytical linearity in different matrices. Depending on the availability of matching stable isotope-labelled derivates or similar-structure homologues, calibration curves were generated either by using internal standards or by matrix-matched external standards. Precision and recovery data were in the accepted range, although they varied between the different analytes. This new method was considered as fit-for-purpose and applied for the analysis of customised fish feed containing wheat gluten, soy, or pea protein concentrate as well as salmon and zebrafish fed on diets with these ingredients for a period of up to eight weeks. Only mycotoxin enniatin B, at a level near the limit of detection, and low levels of isoflavones were detected in the feed, demonstrating the effectiveness of maximum level recommendations and modern feed processing technologies in the Norwegian aquaculture industry. Consequently, carry-over into fish muscle was not observed, confirming that fillets from plant-fed salmon were safe for human consumption.


Subject(s)
Animal Feed/analysis , Food Contamination/analysis , Mycotoxins/analysis , Phytoestrogens/analysis , Salmon , Zebrafish , Animals , Chromatography, Liquid , Glutens , Pea Proteins , Soybean Proteins , Tandem Mass Spectrometry , Triticum
SELECTION OF CITATIONS
SEARCH DETAIL
...