Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 53(13): 7363-7370, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31192587

ABSTRACT

Approximately 2.8 t of plutonium (Pu) has been deposited in the Nevada National Security Site (NNSS) subsurface as a result of underground nuclear testing. Most of this Pu is sequestered in nuclear melt glass. However, Pu migration has been observed and attributed to colloid facilitated transport. To identify the mechanisms controlling Pu mobilization, long-term (∼3 year) laboratory nuclear melt glass alteration experiments were performed at 25 to 200 °C to mimic hydrothermal conditions in the vicinity of underground nuclear tests. The clay and zeolite colloids produced in these experiments are similar to those identified in NNSS groundwater. At 200 °C, maximum Pu and colloid concentrations of 30 Bq/L and 150 mg/L, respectively, were observed. However, much lower Pu and colloid concentrations were observed at 25 and 80 °C. These data suggest that Pu concentrations above the drinking water Maximum Contaminant Levels (0.56 Bq/L) may exist during early hydrothermal conditions in the vicinity of underground nuclear tests. However, formation of colloid-associated Pu will tend to decrease with time as nuclear test cavity temperatures decrease. Furthermore, median colloid concentrations in NNSS groundwater (1.8 mg/L) suggest that the high colloid and Pu concentrations observed in our 140 and 200 °C experiments are unlikely to persist in downgradient NNSS groundwater. While our experiments did not span all groundwater and nuclear melt glass conditions that may be present at the NNSS, our results are consistent with the documented low Pu concentrations in NNSS groundwater.


Subject(s)
Plutonium , Water Pollutants, Radioactive , Colloids , Nevada , Security Measures
2.
Appl Environ Microbiol ; 82(24): 7093-7101, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27694230

ABSTRACT

Safe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) to Pseudomonas sp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu)-contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS) in Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild-type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the same sorption affinity for Pu(IV). In vitro experiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission electron microscopy indicated that 2- to 3-nm nanocrystalline Pu(IV)O2 formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates. IMPORTANCE: Our results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV) and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results, along with a growing body of literature, highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface.


Subject(s)
Plutonium/metabolism , Polymers/metabolism , Pseudomonas/metabolism , Soil Pollutants, Radioactive/metabolism , Oxidation-Reduction , Pseudomonas/genetics , Pseudomonas/isolation & purification , Soil Microbiology
3.
J Environ Radioact ; 141: 90-6, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25562752

ABSTRACT

The effect of altering the order of addition in a ternary system of plutonium(IV), organic matter (fulvic acid, humic acid and desferrioxamine B), and montmorillonite was investigated. A decrease in Pu(IV) sorption to montmorillonite in the presence of fulvic and humic acid relative to the binary Pu-montmorillonite system, is attributed to strong organic aqueous complex formation with aqueous Pu(IV). No dependence on the order of addition was observed. In contrast, in the system where Pu(IV) was equilibrated with desferrioxamine B (DFOB) prior to addition of montmorillonite, an increase in Pu(IV) sorption was observed relative to the binary system. When DFOB was equilibrated with montmorillonite prior to addition of Pu(IV), Pu(IV) sorption was equivalent to the binary system. X-ray diffraction and transmission electron microscopy revealed that DFOB accumulated in the interlayer of montmorillonite. The order of DFOB addition plays an important role in the observed sorption/desorption behavior of Pu. The irreversible nature of DFOB accumulation in the montmorillonite interlayer leads to an apparent dependence of Pu sorption on the order of addition in the ternary system. This work demonstrates that the order of addition will be relevant in ternary systems in which at least one component exhibits irreversible sorption behavior.


Subject(s)
Bentonite/chemistry , Benzopyrans/analysis , Deferoxamine/analysis , Humic Substances/analysis , Plutonium/chemistry , Soil Pollutants, Radioactive/chemistry , Adsorption , Microscopy, Electron, Transmission , X-Ray Diffraction
4.
Environ Sci Technol ; 45(7): 2718-24, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21366306

ABSTRACT

To understand the key processes affecting 99Tc mobility in the subsurface and help with the remediation of contaminated sites, the binding constants of several humic substances (humic and fulvic acids) with Tc(IV) were determined, using a solvent extraction technique. The novelty of this paper lies in the determination of the binding constants of the complexes formed with the individual species TcO(OH)+ and TcO(OH)2(0). Binding constants were found to be 6.8 and between 3.9 and 4.3, for logß1,-1,1 and logß1,-2,1, respectively; these values were little modified by a change of ionic strength, in most cases, between 0.1 and 1.0 M, nor were they by the nature and origin of the humic substances. Modeling calculations based on these show TcO(OH)-HA to be the predominant complex in a system containing 20 ppm HA and in the 4-6 pH range, whereas TcO(OH)2(0) and TcO(OH)2-HA are the major species, in the pH 6-8 range.


Subject(s)
Humic Substances/analysis , Soil Pollutants, Radioactive/chemistry , Technetium/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Osmolar Concentration
SELECTION OF CITATIONS
SEARCH DETAIL