Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS Genet ; 18(12): e1010549, 2022 12.
Article in English | MEDLINE | ID: mdl-36516161

ABSTRACT

Flippases transport lipids across the membrane bilayer to generate and maintain asymmetry. The human fungal pathogen Candida albicans has 5 flippases, including Drs2, which is critical for filamentous growth and phosphatidylserine (PS) distribution. Furthermore, a drs2 deletion mutant is hypersensitive to the antifungal drug fluconazole and copper ions. We show here that such a flippase mutant also has an altered distribution of phosphatidylinositol 4-phosphate [PI(4)P] and ergosterol. Analyses of additional lipid transporters, i.e. the flippases Dnf1-3, and all the oxysterol binding protein (Osh) family lipid transfer proteins, i.e. Osh2-4 and Osh7, indicate that they are not critical for filamentous growth. However, deletion of Osh4 alone, which exchanges PI(4)P for sterol, in a drs2 mutant can bypass the requirement for this flippase in invasive filamentous growth. In addition, deletion of the lipid phosphatase Sac1, which dephosphorylates PI(4)P, in a drs2 mutant results in a synthetic growth defect, suggesting that Drs2 and Sac1 function in parallel pathways. Together, our results indicate that a balance between the activities of two putative lipid transporters regulates invasive filamentous growth, via PI(4)P. In contrast, deletion of OSH4 in drs2 does not restore growth on fluconazole, nor on papuamide A, a toxin that binds PS in the outer leaflet of the plasma membrane, suggesting that Drs2 has additional role(s) in plasma membrane organization, independent of Osh4. As we show that C. albicans Drs2 localizes to different structures, including the Spitzenkörper, we investigated if a specific localization of Drs2 is critical for different functions, using a synthetic physical interaction approach to restrict/stabilize Drs2 at the Spitzenkörper. Our results suggest that the localization of Drs2 at the plasma membrane is critical for C. albicans growth on fluconazole and papuamide A, but not for invasive filamentous growth.


Subject(s)
Candida albicans , Saccharomyces cerevisiae Proteins , Humans , Candida albicans/metabolism , Adenosine Triphosphatases/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Fluconazole/pharmacology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
2.
J Biol Chem ; 297(2): 100917, 2021 08.
Article in English | MEDLINE | ID: mdl-34181946

ABSTRACT

Across eukaryotes, Rho GTPases such as Rac and Cdc42 play important roles in establishing cell polarity, which is a key feature of cell growth. In mammals and filamentous fungi, Rac targets large protein complexes containing NADPH oxidases (NOX) that produce reactive oxygen species (ROS). In comparison, Rho GTPases of unicellular eukaryotes were believed to signal cell polarity without ROS, and it was unclear whether Rho GTPases were required for ROS production in these organisms. We document here the first example of Rho GTPase-mediated post-transcriptional control of ROS in a unicellular microbe. Specifically, Cdc42 is required for ROS production by the NOX Fre8 of the opportunistic fungal pathogen Candida albicans. During morphogenesis to a hyphal form, a filamentous growth state, C. albicans FRE8 mRNA is induced, which leads to a burst in ROS. Fre8-ROS is also induced during morphogenesis when FRE8 is driven by an ectopic promoter; hence, Fre8 ROS production is in addition controlled at the post-transcriptional level. Using fluorescently tagged Fre8, we observe that the majority of the protein is associated with the vacuolar system. Interestingly, much of Fre8 in the vacuolar system appears inactive, and Fre8-induced ROS is only produced at sites near the hyphal tip, where Cdc42 is also localized during morphogenesis. We observe that Cdc42 is necessary to activate Fre8-mediated ROS production during morphogenesis. Cdc42 regulation of Fre8 occurs without the large NOX protein complexes typical of higher eukaryotes and therefore represents a novel form of ROS control by Rho GTPases.


Subject(s)
Candida albicans/pathogenicity , Candidiasis/pathology , Hyphae/metabolism , Reactive Oxygen Species/metabolism , cdc42 GTP-Binding Protein/metabolism , Candida albicans/isolation & purification , Candidiasis/metabolism , Candidiasis/microbiology , Cell Polarity , Fungal Proteins/metabolism , Morphogenesis
3.
PLoS Pathog ; 13(2): e1006205, 2017 02.
Article in English | MEDLINE | ID: mdl-28192532

ABSTRACT

Virulence of the human fungal pathogen Candida albicans depends on the switch from budding to filamentous growth, which requires sustained membrane traffic and polarized growth. In many organisms, small GTPases of the Arf (ADP-ribosylation factor) family regulate membrane/protein trafficking, yet little is known about their role in fungal filamentous growth. To investigate these GTPases in C. albicans, we generated loss of function mutants in all 3 Arf proteins, Arf1-Arf3, and 2 Arf-like proteins, Arl1 and Arl3. Our results indicate that of these proteins, Arf2 is required for viability and sensitivity to antifungal drugs. Repressible ARF2 expression results in defects in filamentous growth, cell wall integrity and virulence, likely due to alteration of the Golgi. Arl1 is also required for invasive filamentous growth and, although arl1/arl1 cells can initiate hyphal growth, hyphae are substantially shorter than that of the wild-type, due to the inability of this mutant to maintain hyphal growth at a single site. We show that this defect does not result from an alteration of phospholipid distribution and is unlikely to result from the sole Golgin Imh1 mislocalization, as Imh1 is not required for invasive filamentous growth. Rather, our results suggest that the arl1/arl1 hyphal growth defect results from increased secretion in this mutant. Strikingly, the arl1/arl1 mutant is drastically reduced in virulence during oropharyngeal candidiasis. Together, our results highlight the importance of Arl1 and Arf2 as key regulators of hyphal growth and virulence in C. albicans and identify a unique function of Arl1 in secretion.


Subject(s)
ADP-Ribosylation Factors/metabolism , Candida albicans/enzymology , Candida albicans/growth & development , Candida albicans/pathogenicity , Fungal Proteins/metabolism , Membrane Proteins/metabolism , Animals , Blotting, Western , Candidiasis , Disease Models, Animal , Gene Knockout Techniques , Mice , Mice, Inbred BALB C , Morphogenesis , Virulence
4.
Mol Microbiol ; 89(4): 626-48, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23796158

ABSTRACT

Rho G-proteins are critical for polarized growth, yet little is known about the dynamics of their activation during fungal filamentous growth. We first investigated the roles of Rho1 and Rho2 during Candida albicans filamentous growth. Our results show that Rho1 is required for invasive filamentous growth and that Rho2 is not functionally redundant with Rho1. Using fluorescent reporters, we examined the dynamics of the active form of Rho1 and Cdc42 during initiation and maintenance of hyphal growth. Quantitative analyses indicated that the distribution, but not the level, of these active G-proteins is altered during initial polarization upon germ tube emergence. A comparison of the dynamics of these active G-proteins during budding and hyphal growth indicates that a higher concentration of active Cdc42 was recruited to the germ tube tip than to the bud tip. During hyphal elongation, active Cdc42 remained tightly restricted to the hyphal tip, whereas active Rho1 was broadly associated with the apex and subsequently recruited to the cell division site. Furthermore, our data suggest that phosphoinositide-bis-phosphates are critical to stabilize active Rho1 at the growth site. Together, our results point towards different regulation of Cdc42 and Rho1 activity during initiation and maintenance of filamentous growth.


Subject(s)
Candida albicans/cytology , Candida albicans/growth & development , Gene Expression Regulation, Fungal , cdc42 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism , Candida albicans/genetics , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Protein Transport
5.
Mol Biol Cell ; 19(9): 3638-51, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18579689

ABSTRACT

Rho G proteins and their regulators are critical for cytoskeleton organization and cell morphology in all eukaryotes. In the opportunistic pathogen Candida albicans, the Rho G proteins Cdc42 and Rac1 are required for the switch from budding to filamentous growth in response to different stimuli. We show that Dck1, a protein with homology to the Ced-5, Dock180, myoblast city family of guanine nucleotide exchange factors, is necessary for filamentous growth in solid media, similar to Rac1. Our results indicate that Dck1 and Rac1 do not function in the same pathway as the transcription factor Czf1, which is also required for embedded filamentous growth. The conserved catalytic region of Dck1 is required for such filamentous growth, and in vitro this region directly binds a Rac1 mutant, which mimics the nucleotide-free state. In vivo overexpression of a constitutively active Rac1 mutant, but not wild-type Rac1, in a dck1 deletion mutant restores filamentous growth. These results indicate that the Dock180 guanine nucleotide exchange factor homologue, Dck1 activates Rac1 during invasive filamentous growth. We conclude that specific exchange factors, together with the G proteins they activate, are required for morphological changes in response to different stimuli.


Subject(s)
Candida albicans/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Guanine Nucleotide Exchange Factors/metabolism , rac1 GTP-Binding Protein/metabolism , Amino Acid Sequence , Animals , Catalytic Domain , Enzyme Activation , Humans , Models, Biological , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Subcellular Fractions/metabolism
6.
J Biol Chem ; 283(25): 17515-30, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18378681

ABSTRACT

Guanine nucleotide exchange factor activation of Rho G-proteins is critical for cytoskeletal reorganization. In the yeast Saccharomyces cerevisiae, the sole guanine nucleotide exchange factor for the Rho G-protein Cdc42p, Cdc24p, is essential for its site-specific activation. Several mammalian exchange factors have been shown to oligomerize; however, the function of this homotypic interaction is unclear. Here we show that Cdc24p forms oligomers in yeast via its catalytic Dbl homology domain. Mutation of residues critical for Cdc24p oligomerization also perturbs the localization of this exchange factor yet does not alter its catalytic activity in vitro. Chemically induced oligomerization of one of these oligomerization-defective mutants partially restored its localization to the bud tip and nucleus. Furthermore, chemically induced oligomerization of wild-type Cdc24p does not affect in vitro exchange factor activity, yet it results in a decrease of activated Cdc42p in vivo and the presence of Cdc24p in the nucleus at all cell cycle stages. Together, our results suggest that Cdc24p oligomerization regulates Cdc42p activation via its localization.


Subject(s)
Cell Cycle Proteins/metabolism , Gene Expression Regulation, Fungal , Guanine Nucleotide Exchange Factors/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , cdc42 GTP-Binding Protein, Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Base Sequence , Catalysis , Cell Nucleus/metabolism , Models, Biological , Models, Genetic , Molecular Conformation , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid
7.
J Cell Physiol ; 210(2): 479-88, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17111367

ABSTRACT

Mutations in the gene encoding ClC-5 lead to X-linked hypercalciuric nephrolithiasis (XLHN), characterized by proteinuria, hypercalciuria, and phosphaturia. In renal proximal tubule cells, ClC-5 was identified as an important player in endocytosis, which ensures reabsorption of filtered protein. However, the recent finding that ClC-5 is a Cl(-)/H(+) antiporter and not a Cl(-) channel as long thought points to the lack of understanding of its functional role. Also, little biochemical data are available about ClC-5 and its post-translational modifications have not been investigated. Here, we examined the role of N-glycosylation of xClC-5 in the Xenopus oocyte expression system by comparing wild-type (WT) xClC-5 and N-glycosylation site mutants. We found that xClC-5 is N-glycosylated on asparagines 169 and 470, which are the only N-glycosylated sites. xClC-5 mutants have an increased susceptibility to polyubiquitination and proteasomal degradation; however, without a notable impact on the expression level. Using a cross-linking reagent, we showed that xClC-5 assembles into protein complexes, independent of its N-glycosylation. Voltage-clamp measurements showed a reduced conductance in the presence of tunicamycin and with xClC-5 N-glycosylation site mutants. Using immunocytochemistry, we localized xClC-5 mainly in intracellular compartments, and found that its cell surface pool is reduced in the absence of N-glycans. We further examined the plasma membrane retrieval of WT and mutant xClC-5 in the presence of Brefeldin A (BFA), and found that the non-glycosylated mutant was retrieved more than five times faster than the WT protein. We conclude that N-glycosylation enhances cell surface expression of xClC-5, increasing its plasma membrane transport activity.


Subject(s)
Cell Membrane/metabolism , Chloride Channels/metabolism , Xenopus Proteins/metabolism , Animals , Asparagine/metabolism , Cell Membrane/drug effects , Cell Membrane/genetics , Chloride Channels/drug effects , Chloride Channels/genetics , Chlorides/metabolism , Female , Glycosylation/drug effects , Intracellular Fluid/drug effects , Intracellular Fluid/metabolism , Macromolecular Substances/metabolism , Membrane Potentials/drug effects , Membrane Potentials/genetics , Mutation/genetics , Oocytes/metabolism , Patch-Clamp Techniques , Polysaccharides/metabolism , Polysaccharides/pharmacology , Proteasome Endopeptidase Complex/metabolism , Protein Synthesis Inhibitors/pharmacology , Protein Transport/drug effects , Protein Transport/genetics , Time Factors , Xenopus Proteins/drug effects , Xenopus Proteins/genetics , Xenopus laevis
8.
Br J Pharmacol ; 144(8): 1037-50, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15685210

ABSTRACT

1. Effects of neuropeptides of the vasopressin family on Cl(-) secretion have not yet been reported in lung. Using the 16HBE14o- bronchial epithelial cell line, we investigated their action on Cl(-) secretion. 2. In symmetrical Cl(-) solutions, basolateral application of arginine vasotocin (AVT), oxytocin or isotocin induced a transient I(sc) stimulation (I(peak)), whereas arginine vasopressin (AVP) did not. The effects of different Cl(-) channel blockers and of a protein kinase C (PKC) inhibitor suggest that CFTR is involved in I(peak). The calcium-activated K(+) channel (SK4) and the Cl(-)/HCO(-)(3) exchanger favor the driving force for AVT-mediated Cl(-) secretion. The antagonists of V1a (SR49059)- and V1b (SSR149415)-receptors blocked I(peak), while SR121463B, a V2 receptor antagonist, did not. These results point to the stimulation of a V1-like receptor mediating I(peak) and presenting an efficacy order, AVT>oxytocin>isotocin>>AVP. 3. When a serosal to mucosal Cl(-) gradient was applied, AVT and AVP both stimulated I(sc) according to a biphasic profile, I(peak) being followed by a plateau phase (I(plateau)). The pharmacology of I(plateau) suggests that CFTR channels are involved and that Na(+)/K(+)/2Cl(-) is the only transporter associated with I(plateau). dDAVP, a V2 receptor agonist-induced I(plateau) with the same potency as AVP, suggesting the involvement of V2 receptors in the AVP-induced I(plateau). V2 receptors are present on both opposite membranes, while V1-like receptors are mainly expressed on the basolateral membranes. RT-PCR experiments show the expression of V1a, V1b, V2 and vasopressin-activated calcium-mobilizing (VACM) receptors mRNAs.


Subject(s)
Chloride Channels/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Vasopressins/pharmacology , Vasotocin/pharmacology , Cell Line , Dose-Response Relationship, Drug , Humans , Receptors, Vasopressin/agonists , Receptors, Vasopressin/metabolism
9.
Biochim Biophys Acta ; 1664(2): 224-9, 2004 Aug 30.
Article in English | MEDLINE | ID: mdl-15328055

ABSTRACT

Activation of mitogen-activated protein (MAP) kinases has been reported to occur after a hypo-osmotic cell swelling in various types of cells. In renal epithelial A6 cells, the hypo-osmotic shock induced a rapid increase in the phosphorylation of an extracellular signal-regulated kinase (ERK)-like protein that was maximal 10 min after osmotic stress. Activation of ERK was significantly increased when hypo-osmotic stress was performed in the absence of extracellular Ca2+, a condition that inhibits regulatory volume decrease (RVD). Exposure of cells to PD98059, an inhibitor of the MAP kinase kinase MEK, at a concentration that fully cancelled ERK activation, did not inhibit RVD. On the contrary, RVD was abolished when osmotic shock was induced in the presence of SB203580, an inhibitor of stress-activated protein kinases (SAPKs). These results suggest that different MAP kinases are activated after hypo-osmotic stress in A6 cells. SAPKs would be involved in the control of RVD, while ERK would lead to later events, such as gene expression or energy metabolism.


Subject(s)
Cell Size , Kidney/cytology , Mitogen-Activated Protein Kinases/physiology , Animals , Calcium/physiology , Cells, Cultured , Enzyme Activation , Epithelial Cells/cytology , Kidney/enzymology , Osmotic Pressure , Phosphorylation
10.
Plant J ; 35(3): 295-304, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12887581

ABSTRACT

Iron is an important nutrient in N2-fixing legume root nodules. Iron supplied to the nodule is used by the plant for the synthesis of leghemoglobin, while in the bacteroid fraction, it is used as an essential cofactor for the bacterial N2-fixing enzyme, nitrogenase, and iron-containing proteins of the electron transport chain. The supply of iron to the bacteroids requires initial transport across the plant-derived peribacteroid membrane, which physically separates bacteroids from the infected plant cell cytosol. In this study, we have identified Glycine max divalent metal transporter 1 (GmDmt1), a soybean homologue of the NRAMP/Dmt1 family of divalent metal ion transporters. GmDmt1 shows enhanced expression in soybean root nodules and is most highly expressed at the onset of nitrogen fixation in developing nodules. Antibodies raised against a partial fragment of GmDmt1 confirmed its presence on the peribacteroid membrane (PBM) of soybean root nodules. GmDmt1 was able to both rescue growth and enhance 55Fe(II) uptake in the ferrous iron transport deficient yeast strain (fet3fet4). The results indicate that GmDmt1 is a nodule-enhanced transporter capable of ferrous iron transport across the PBM of soybean root nodules. Its role in nodule iron homeostasis to support bacterial nitrogen fixation is discussed.


Subject(s)
Cation Transport Proteins/metabolism , Glycine max/metabolism , Iron-Binding Proteins/metabolism , Iron/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Base Sequence , Cation Transport Proteins/genetics , Cloning, Molecular , DNA, Plant/genetics , Gene Expression Regulation, Plant , Genes, Plant , Ion Transport , Iron-Binding Proteins/genetics , Molecular Sequence Data , Nitrogen Fixation , Plant Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Glycine max/genetics , Glycine max/microbiology , Symbiosis , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...