Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(19): eabi6690, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35559683

ABSTRACT

Scaling the number of qubits while maintaining high-fidelity quantum gates remains a key challenge for quantum computing. Presently, superconducting quantum processors with >50 qubits are actively available. For these systems, fixed-frequency transmons are attractive because of their long coherence and noise immunity. However, scaling fixed-frequency architectures proves challenging because of precise relative frequency requirements. Here, we use laser annealing to selectively tune transmon qubits into desired frequency patterns. Statistics over hundreds of annealed qubits demonstrate an empirical tuning precision of 18.5 MHz, with no measurable impact on qubit coherence. We quantify gate error statistics on a tuned 65-qubit processor, with median two-qubit gate fidelity of 98.7%. Baseline tuning statistics yield a frequency-equivalent resistance precision of 4.7 MHz, sufficient for high-yield scaling beyond 103 qubit levels. Moving forward, we anticipate selective laser annealing to play a central role in scaling fixed-frequency architectures.

2.
Nanotechnology ; 25(24): 245601, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24857856

ABSTRACT

By exploiting phase-separation in oxide materials, we present a simple and potentially low-cost approach to create exceptional superhydrophobicity in thin-film based coatings. By selecting the TiO2-Cu2O system and depositing through magnetron sputtering onto single crystal and metal templates, we demonstrate growth of nanostructured, chemically phase-segregated composite films. These coatings, after appropriate chemical surface modification, demonstrate a robust, non-wetting Cassie-Baxter state and yield an exceptional superhydrophobic performance, with water droplet contact angles reaching to ~172° and sliding angles <1°. As an added benefit, despite the photo-active nature of TiO2, the chemically coated composite film surfaces display UV stability and retain superhydrophobic attributes even after exposure to UV (275 nm) radiation for an extended period of time. The present approach could benefit a variety of outdoor applications of superhydrophobic coatings, especially for those where exposure to extreme atmospheric conditions is required.

3.
Nanotechnology ; 24(37): 375201, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23965953

ABSTRACT

We report quasi-1D superconductivity at the interface of LaAlO3 and SrTiO3. The material system and nanostructure fabrication method supply a new platform for superconducting nanoelectronics. Nanostructures having line widths w ~ 10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO3/SrTiO3, placing them in the quasi-1D regime. Broad superconducting transitions versus temperature and finite resistances in the superconducting state well below Tc ≈ 200 mK are observed, suggesting the presence of fluctuation- and heating-induced resistance. The superconducting resistances and V-I characteristics are tunable through the use of a back gate. Four-terminal resistances in the superconducting state show an unusual dependence on the current path, varying by as much as an order of magnitude. This new technology, i.e., the ability to 'write' gate-tunable superconducting nanostructures on an insulating LaAlO3/SrTiO3 'canvas', opens possibilities for the development of new families of reconfigurable superconducting nanoelectronics.

4.
Nat Nanotechnol ; 6(6): 343-7, 2011 Apr 17.
Article in English | MEDLINE | ID: mdl-21499252

ABSTRACT

Devices that confine and process single electrons represent an important scaling limit of electronics. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties. Here, we use an atomic force microscope tip to reversibly 'sketch' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides. In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ∼1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.


Subject(s)
Electrochemistry/instrumentation , Electrons , Nanotechnology/instrumentation , Oxides/chemistry , Strontium/chemistry , Titanium/chemistry , Transistors, Electronic , Electric Capacitance , Electric Conductivity , Electrodes , Electronics/instrumentation , Equipment Design , Quantum Dots , Temperature
5.
Nanotechnology ; 21(47): 475201, 2010 Nov 26.
Article in English | MEDLINE | ID: mdl-21030768

ABSTRACT

We report direct measurements of the potential barriers and electronic coupling between nanowire segments within a sketch-based oxide nanotransistor (SketchFET) device. Near room temperature, switching is governed by thermal activation across a potential barrier controlled by the nanowire gate. Below T = 150 K, current flow is dominated by quantum field emission. Sharp maxima in the quantum field emission, observed at T(C1) = 65 K and T(C2) = 25 K, arise from dielectric anomalies occurring at structural phase transitions in the SrTiO(3) layer. This direct measurement of the source-drain and gate-drain energy barriers is crucial for the development of room-temperature logic and memory elements and low-temperature quantum devices.

6.
Chemphyschem ; 5(2): 175-82, 2004 Feb 20.
Article in English | MEDLINE | ID: mdl-15038277

ABSTRACT

The selectins are Ca(2+)-dependent cell adhesion molecules that facilitate the initial attachment of leukocytes to the vascular endothelium by binding to a carbohydrate moiety as exemplified by the tetrasaccharide, sialyl Lewis X (sLeX). An important property of the selectin-sLeX interaction is its ability to withstand the hydrodynamic force of the blood flow. Herein, we used single-molecule dynamic force spectroscopy (DFS) to identify the molecular determinants within sLeX that give rise to the dynamic properties of the selectin/sLeX interaction. Our atomic force microscopy (AFM) measurements revealed that the unbinding of the selectin/sLeX complexes involves overcoming at least two activation barriers. The inner barrier, which determines the dynamic response of the complex at high forces, is governed by the interaction between the Fuc residue of sLeX and a Ca2+ ion chelated to the lectin domain of the selectin molecule, whereas the outer activation barrier can be attributed to interactions involving the sialic acid residue of sLeX. Due to their steep inner activation barriers, the selectin-sLeX complexes are less sensitive to high pulling forces. Hence, besides its contribution to the bond energy, the Ca2+ ion also grants the selectin-sLeX complexes a tensile strength that is crucial for the selectin-mediated rolling of leukocytes.


Subject(s)
Cell Adhesion/physiology , Lewis Blood Group Antigens , Oligosaccharides/metabolism , Selectins/metabolism , Calcium/chemistry , Calcium/metabolism , Calcium/pharmacology , Carbohydrate Sequence , Edetic Acid/chemistry , Edetic Acid/metabolism , Edetic Acid/pharmacology , Endothelium, Vascular/metabolism , Humans , Kinetics , Leukocytes/drug effects , Leukocytes/metabolism , Ligands , Microscopy, Atomic Force , Molecular Sequence Data , Oligosaccharides/chemistry , Periodic Acid/chemistry , Periodic Acid/pharmacology , Selectins/chemistry , Sialyl Lewis X Antigen
SELECTION OF CITATIONS
SEARCH DETAIL
...