Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 3(10): 12437-12445, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-31457975

ABSTRACT

A nondestructive one-step approach was applied for grafting biocide-free monodispersed silica nanoparticles (SNPs) with a diameter of 30 ± 10 nm on polystyrene, polyethylene, and polyvinyl chloride surfaces. The prepared surfaces were comprehensively characterized using spectroscopic (Fourier transform infrared attenuated total reflection, ultraviolet-visible, and X-ray photoelectron spectroscopy) and microscopic (high-resolution scanning electron microscopy and atomic force microscopy) methods. The modified polymers were found to maintain their original mechanical and physical properties, while their nanoroughness on the other hand had risen by 1.6-2.7 times because of SNP grafting. The SNP-grafted surfaces displayed anti-biofouling properties, resulting in a significant reduction in the attached Gram-positive Bacillus licheniformis or Gram-negative Pseudomonas aeruginosa bacteria compared to their nongrafted counterparts. Confocal laser scanning microscopy and scanning electron microscopy studies have confirmed that bacterial cells could not successfully adhere onto the SNP-grafted polymer films regardless of the polymer type, and their biofilm formation was therefore damaged. The presented facile and straightforward protocol allows eliminating the need for biocidal agents and resorts to grafted nanosilica instead. This strategy may serve as a feasible and safe platform for the development of sustainable anti-biofouling surfaces in biomedical devices; food, water, and air treatment systems; and industrial equipment.

2.
J Colloid Interface Sci ; 317(1): 101-14, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17927999

ABSTRACT

Maghemite (gamma-Fe2O3) nanoparticles of 15 +/- 3 nm diameter were prepared by nucleation of gelatin/iron oxide followed by growth of gamma-Fe2O3 films onto these nuclei. The gamma-Fe2O3 nanoparticles were coated with polydivinylbenzene (PDVB) by emulsion polymerization of divinylbenzene (DVB) in an aqueous continuous phase containing the gamma-Fe2O3 nanoparticles. The PDVB-coated gamma-Fe2O3 nanoparticles, dispersed in water, were separated from homo-PDVB nanoparticles using the high gradient magnetic field (HGMF) technique. The influence of DVB concentration on the amount of PDVB coating, on the size and size distribution of the coated gamma-Fe2O3 nanoparticles and on their magnetic properties, has been investigated. Air-stable carbon-coated iron (alpha-Fe/C) crystalline nanoparticles of 41 +/- 12 nm diameter have been prepared by annealing the PDVB-coated gamma-Fe2O3 nanoparticles at 1050 degrees C in an inert atmosphere. These nanoparticles exhibit high saturation magnetization value (83 emu g(-1)) and excellent resistance to oxidation. Characterization of the PDVB-coated gamma-Fe2O3 and of the alpha-Fe/C nanoparticles has been accomplished by TEM, HRTEM, DLS, FTIR, XRD, thermal analysis, zeta-potential, and magnetic measurements.


Subject(s)
Carbon/chemistry , Ferric Compounds/chemistry , Magnetics , Nanoparticles/chemistry , Styrenes , Air , Crystallization , Hydrogen-Ion Concentration , Particle Size , Styrenes/chemical synthesis , Styrenes/chemistry , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL