Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(2): e202315162, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38081132

ABSTRACT

N-Trifluoromethylated organics may be applied in drug design, agrochemical synthesis, and materials science, among other areas. Yet, despite recent advances in the synthesis of aliphatic, cyclic and heterocyclic N-trifluoromethyl compounds, no strategy based on trifluoromethyl nitrene has hitherto been explored. Here we describe the formation of triplet trifluoromethyl nitrene from azidotrifluoromethane, a stable and safe-to-use precursor, by visible light photocatalysis. The addition of CF3 N to alkenes via biradical intermediates afforded previously unknown aziridines substituted with trifluoromethyl group on the nitrogen atom. The obtained aziridines were converted into either N-trifluoromethylimidazolines, via formal [3+2] cycloaddition with nitriles, mediated by a Lewis acid, or into N-trifluoromethylaldimines, via ring opening and aryl group migration mediated by a strong Brønsted acid. Our findings open new opportunities for the development of novel classes of N-CF3 compounds with possible applications in the life sciences.

2.
Angew Chem Int Ed Engl ; 62(44): e202307550, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37584300

ABSTRACT

Electron-deficient acridones and in situ generated acridinium salts are reported as potent, closed-shell photooxidants that undergo surprising mechanisms. When bridging acyclic triarylamine catalysts with a carbonyl group (acridones), this completely diverts their behavior away from open-shell, radical cationic, 'beyond diffusion' photocatalysis to closed-shell, neutral, diffusion-controlled photocatalysis. Brønsted acid activation of acridones dramatically increases excited state oxidation power (by +0.8 V). Upon reduction of protonated acridones, they transform to electron-deficient acridinium salts as even more potent photooxidants (*E1/2 =+2.56-3.05 V vs SCE). These oxidize even electron-deficient arenes where conventional acridinium salt photooxidants have thusfar been limited to electron-rich arenes. Surprisingly, upon photoexcitation these electron-deficient acridinium salts appear to undergo two electron reductive quenching to form acridinide anions, spectroscopically-detected as their protonated forms. This new behaviour is partly enabled by a catalyst preassembly with the arene, and contrasts to conventional SET reductive quenching of acridinium salts. Critically, this study illustrates how redox active chromophoric molecules initially considered photocatalysts can transform during the reaction to catalytically active species with completely different redox and spectroscopic properties.

3.
J Am Chem Soc ; 144(48): 22093-22100, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36442139

ABSTRACT

Birch reduction is a time-proven way to hydrogenate aromatic hydrocarbons (such as benzene), which relies on the reducing power of electrons released from alkali metals into liquid ammonia. We have succeeded to characterize the key intermediates of the Birch reduction process─the solvated electron and dielectron and the benzene radical anion─using cyclic voltammetry and photoelectron spectroscopy, aided by electronic structure calculations. In this way, we not only quantify the electron binding energies of these species, which are decisive for the mechanism of the reaction, but also use Birch reduction as a case study to directly connect the two seemingly unrelated experimental techniques.

4.
Org Biomol Chem ; 16(30): 5427-5432, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29905748

ABSTRACT

2'-Deoxyribonucleoside triphosphates (dNTPs) containing 5-(hydroxymethyl)cytosine (5hmC) protected with photocleavable groups (2-nitrobenzyl or 6-nitropiperonyl) were prepared and studied as substrates for the enzymatic synthesis of oligonucleotides and DNA containing a photocaged epigenetic 5hmC base. DNA probes containing photocaged or free 5hmC in the recognition sequence of restriction endonucleases were prepared and used for the study of the photorelease of caged DNA by UV or visible light at different wavelengths. The nitrobenzyl-protected dNTP was a slightly better substrate for DNA polymerases in primer extension or PCR, whereas the nitropiperonyl-protected nucleotide underwent slightly faster photorelease at 400 nm. However, both photocaged building blocks can be used in polymerase synthesis and the photorelease of 5hmC in DNA.


Subject(s)
5-Methylcytosine/analogs & derivatives , DNA/chemistry , Deoxyribonucleosides/chemistry , Polyphosphates/chemistry , 5-Methylcytosine/chemical synthesis , 5-Methylcytosine/chemistry , DNA/chemical synthesis , Deoxyribonucleosides/chemical synthesis , Light , Photochemical Processes , Polyphosphates/chemical synthesis , Ultraviolet Rays
5.
Org Biomol Chem ; 16(9): 1527-1535, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29431832

ABSTRACT

Nucleosides, nucleotides and 2'-deoxyribonucleoside triphosphates (dNTPs) containing 5-(hydroxymethyl)uracil protected with photocleavable groups (2-nitrobenzyl-, 6-nitropiperonyl or 9-anthrylmethyl) were prepared and tested as building blocks for the polymerase synthesis of photocaged oligonucleotides and DNA. Photodeprotection (photorelease) reactions were studied in detail on model nucleoside monophosphates and their photoreaction quantum yields were determined. Photocaged dNTPs were then tested and used as substrates for DNA polymerases in primer extension or PCR. DNA probes containing photocaged or free 5-hydroxymethylU in the recognition sequence of restriction endonucleases were prepared and used for the study of photorelease of caged DNA by UV or visible light at different wavelengths. The nitropiperonyl-protected nucleotide was found to be a superior building block because the corresponding dNTP is a good substrate for DNA polymerases, and the protecting group is efficiently cleavable by irradiation by UV or visible light (up to 425 nm).


Subject(s)
DNA-Directed DNA Polymerase/metabolism , DNA/biosynthesis , DNA/chemistry , Light , Nucleotides/chemistry , Pentoxyl/analogs & derivatives , Photochemical Processes , Models, Molecular , Nucleic Acid Conformation , Pentoxyl/chemistry
6.
Chem Commun (Camb) ; 53(99): 13253-13255, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29184924

ABSTRACT

DNA templates containing 5-hydroxymethyluracil or 5-hydroxymethylcytosine were used in an in vitro transcription assay with RNA polymerase from Escherichia coli. A strong enhancement of transcription was observed from DNA containing the Pveg promoter whereas a decrease was observed from DNA containing the rrnB P1 promoter, suggesting that they may act as epigenetic marks.


Subject(s)
Cytosine/metabolism , DNA-Directed RNA Polymerases/genetics , Epigenesis, Genetic/genetics , Escherichia coli/enzymology , Pentoxyl/analogs & derivatives , Transcription, Genetic/genetics , Cytosine/chemistry , DNA-Directed RNA Polymerases/metabolism , Pentoxyl/chemistry , Pentoxyl/metabolism
7.
Nucleic Acids Res ; 44(7): 3000-12, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27001521

ABSTRACT

DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , DNA/chemistry , Transcription, Genetic , Bacillus subtilis/enzymology , DNA/metabolism , Deoxyribonucleotides/biosynthesis , Deoxyribonucleotides/chemistry , Escherichia coli/enzymology , Nucleic Acid Conformation , Templates, Genetic
8.
Chembiochem ; 16(15): 2225-36, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26382079

ABSTRACT

Previous studies of polymerase synthesis of base-modified DNAs and their cleavage by restriction enzymes have mostly related only to 5-substituted pyrimidine and 7-substituted 7-deazaadenine nucleotides. Here we report the synthesis of a series of 7-substituted 7-deazaguanine 2'-deoxyribonucleoside 5'-O-triphosphates (dG(R) TPs), their use as substrates for polymerase synthesis of modified DNA and the influence of the modification on their cleavage by type II restriction endonucleases (REs). The dG(R) TPs were generally good substrates for polymerases but the PCR products could not be visualised on agarose gels by intercalator staining, due to fluorescence quenching. The presence of 7-substituted 7-deazaguanine residues in recognition sequences of REs in most cases completely blocked the cleavage.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , DNA/chemistry , DNA/metabolism , Deoxyribonucleotides/metabolism , Guanine/analogs & derivatives , DNA/biosynthesis , Deoxyribonucleotides/chemistry , Guanine/chemistry , Guanine/metabolism
9.
J Org Chem ; 80(5): 2676-99, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25658679

ABSTRACT

A series of monosubstituted pyrimidinium and pyrazinium triflates and 3,5-disubstituted pyridinium triflates were prepared and tested as simple catalysts of oxidations with hydrogen peroxide, using sulfoxidation as a model reaction. Their catalytic efficiency strongly depends on the type of substituent and is remarkable for derivatives with an electron-withdrawing group, showing reactivity comparable to that of flavinium salts which are the prominent organocatalysts for oxygenations. Because of their high stability and good accessibility, 4-(trifluoromethyl)pyrimidinium and 3,5-dinitropyridinium triflates are the catalysts of choice and were shown to catalyze oxidation of aliphatic and aromatic sulfides to sulfoxides, giving quantitative conversions, high preparative yields and excellent chemoselectivity. The high efficiency of electron-poor heteroarenium salts is rationalized by their ability to readily form adducts with nucleophiles, as documented by low pKR+ values (pKR+ < 5) and less negative reduction potentials (Ered > -0.5 V). Hydrogen peroxide adducts formed in situ during catalytic oxidation act as substrate oxidizing agents. The Gibbs free energies of oxygen transfer from these heterocyclic hydroperoxides to thioanisole, obtained by calculations at the B3LYP/6-311++g(d,p) level, showed that they are much stronger oxidizing agents than alkyl hydroperoxides and in some cases are almost comparable to derivatives of flavin hydroperoxide acting as oxidizing agents in monooxygenases.

SELECTION OF CITATIONS
SEARCH DETAIL
...