Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Toxicol Sci ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876971

ABSTRACT

Perfluorononanoic acid (PFNA) is a commercially relevant, long-chain (8 fully fluorinated carbon) perfluorinated carboxylic acid (PFCA). PFNA has limited terrestrial ecotoxicity data and is detected in humans, animals, and the environment. This study is the fourth in a series with the objective of investigating the toxicity of a suite of per- and polyfluoroalkyl substances (PFAS) detected on military installations in a mammal indigenous to North America. Peromyscus leucopus (white-footed mice, ∼25/sex/dose) were exposed via oral gavage to either 0, 0.03, 0.14, 1, or 3 mg PFNA/kg-day for 112 consecutive days (4 weeks pre-mating exposure followed by an additional 12 weeks of exposure after onset of mating). Parental generation animals were assessed for potential reproductive and developmental effects, organ weight changes, thyroid modulation, and immunotoxicity. Pup weight and survival were assessed at postnatal days 0, 1, 4, 7, and 10. Change in liver weight was determined to yield the most sensitive dose response according to benchmark dose analysis, and serves as the most protective point of departure (BMDL = 0.37 mg/kg-d PFNA). Other effects of PFNA exposure included reduced formation of plaque forming cells, which are indicative of functional immune deficits (BMDL = 2.31 mg/kg-d); decreased serum thyroxine (BMDL = 0.93 mg/kg-d) without changes in some other hormones; and increased stillbirths (BMDL = 0.61 mg/kg-d PFNA). Pup weight and survival were not affected by PFNA exposure. Combined with data from previous studies, data from Peromyscus provide a One Health perspective on health effects of PFAS.

2.
Environ Toxicol Chem ; 42(11): 2364-2374, 2023 11.
Article in English | MEDLINE | ID: mdl-37431895

ABSTRACT

The comparative toxicity of six per- and polyfluoroalkyl substance (PFAS)-free and one PFAS-containing aqueous film-forming foam (AFFF) was evaluated in an outbred mouse species as well as several in vitro assays. The in vivo toxicological profile of PFAS-free AFFFs in short-term, high-concentration exposures is different than that of a PFAS-containing AFFF. The PFAS-containing reference product induced increased liver weights, while the PFAS-free AFFFs were linked to either decreased or unaffected relative liver weights. The in vitro toxicological profile across PFAS-free AFFFs was uniform except in the Microtox® assay, where thresholds were variable and spanned several orders of magnitude. This direct comparison of products through short-term toxicity tests and in vitro screenings represents early data to support evaluation of potential regrettable substitutions when selecting alternative PFAS-free AFFFs. Further work in diverse taxa (e.g., aquatic organisms, terrestrial invertebrates, birds) and mammalian studies capturing sensitive life stages will refine and expand this data set across a range of risk-relevant toxicological endpoints. Environ Toxicol Chem 2023;42:2364-2374. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Animals , Mice , Fluorocarbons/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Water , Birds , Mammals
3.
Reprod Toxicol ; 120: 108421, 2023 09.
Article in English | MEDLINE | ID: mdl-37330177

ABSTRACT

Although perfluorohexane sulfonate (PFHxS) is structurally similar to perfluorooctane sulfonate (PFOS) and also widely detected in humans and the environment, comparatively fewer toxicity data exists on this 6-chain perfluoroalkyl sulfonic acid. In this study, repeated oral doses of PFHxS were administered to deer mice (Peromyscus maniculatus) to evaluate subchronic toxicity and potential effects on reproduction and development. Maternal oral exposure to PFHxS caused increased stillbirths, which is relevant for ecological risk assessment, and resulted in a benchmark dose lower limit (BMDL) of 5.72 mg/kg-d PFHxS. Decreased plaque formation, which is relevant for human health risk assessment, occurred in both sexes of adult animals (BMDL = 8.79 mg/kg-d PFHxS). These data are the first to suggest a direct link between PFHxS and decreased functional immunity in an animal model. Additionally, female animals exhibited increased liver:body weight and animals of both sexes exhibited decreased serum thyroxine (T4) levels. Notably, since reproductive effects were used to support 2016 draft health advisories and immune effects were used in 2022 drinking water health advisories released by the United States Environmental Protection Agency for PFOS and perfluorooctanoic acid (PFOA), these novel data can potentially support advisories for PFHxS because relevant points of departure emerge at similar thresholds in a wild mammal and corroborate the general understanding of per- and polyfluoroalkyl substances (PFAS).


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , United States , Adult , Male , Humans , Animals , Female , Peromyscus , Alkanesulfonic Acids/toxicity , Alkanesulfonates/pharmacology , Reproduction , Environmental Pollutants/toxicity
4.
Toxicol Sci ; 192(1): 97-105, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36629485

ABSTRACT

6:2 fluorotelomer sulfonate (6:2 FTS) has been used as a replacement for legacy per- and polyfluoroalkyl substances (PFAS). We assessed reproductive and developmental effects in a human-wildlife hybrid animal model based on the association of adverse effects linked to legacy PFAS with these sensitive life stages. In this study, white-footed mice were exposed orally to 0, 0.2, 1, 5, or 25 mg/kg-day 6:2 FTS for 112 days (4 weeks premating exposure plus at least 4 weeks mating exposure). Pregnancy and fertility indices were calculated, and litter production, total litter size, live litter size, stillbirths, litter loss, average pup weight, and pinna unfolding were assessed. Sex steroid and thyroid hormone serum levels were assessed. Body weight, histopathology, and immune function were also assessed in this study. Reproductive endpoints were not significantly altered in response to 6:2 FTS. Spleen weight increased in male mice dosed with 6:2 FTS. Immune function determined via a plaque-forming cell (PFC) assay was decreased in both male and female mice in the 2 highest doses. A low benchmark dose was calculated based on PFCs as the critical effect and was found to be 2.63 and 2.26 mg/kg-day 6:2 FTS in male and female mice, respectively. This study characterizes 6:2 FTS as being potentially immunotoxic with little evidence of effect on reproduction and development; furthermore, it models acceptable levels of exposure. These 2 pieces of information together will aid regulators in setting environmental exposure limits for this PFAS currently thought to be less toxic than other PFAS.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Pregnancy , Humans , Male , Female , Mice , Animals , Peromyscus , Reproduction , Fluorocarbons/toxicity , Fertility , Alkanesulfonic Acids/toxicity
6.
Reprod Toxicol ; 113: 120-127, 2022 10.
Article in English | MEDLINE | ID: mdl-35985401

ABSTRACT

Concerns about per- and polyfluoroalkyl substances (PFAS) stem from their ubiquitous presence in the environment, bioaccumulation, resistance to degradation, and toxicity. Previously, toxicity data relevant to ecological risk assessment has largely been aquatic, terrestrial invertebrates, or avian in origin. In this study, repeated oral exposures of perfluorooctane sulfonate (PFOS) were administered to white-footed mice (Peromyscus leucopus) to evaluate effects on reproduction and development. Prenatal exposure to high doses of PFOS caused neonatal mortality, though growth and development were unaffected by low doses. Additionally, parental (P) generation animals exhibited increased liver:body weight, increased hepatocyte cytoplasmic vacuolization, and decreased serum thyroxine (T4) levels. Total litter loss was selected as the protective critical effect in this study resulting in a benchmark dose low (BMDL) of 0.12 mg/kg-d PFOS. Importantly, PFOS exposure has been linked to reduced adult recruitment in myriad species and at similar thresholds to this study. Similarities in critical/toxicologic effects across taxa may add confidence in risk assessments at sites with multiple taxa or environments.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Alkanesulfonic Acids/toxicity , Animals , Female , Fluorocarbons/toxicity , Peromyscus , Pregnancy , Reproduction , Thyroxine
7.
Environ Toxicol Chem ; 40(10): 2886-2898, 2021 10.
Article in English | MEDLINE | ID: mdl-34236102

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are compounds manufactured for use in paints, cleaning agents, fire suppressants, nonstick cookware, food containers, and water-resistant products. Concerns about PFAS stem from their ubiquitous presence in the environment, persistence, and variable/uncertain bioaccumulation and toxicity. In the present study, 5 perfluoroalkyl acids and one polyfluoroalkyl substance were administered to white-footed mice (Peromyscus leucopus) to elucidate the kinetics of each chemical over 28 d of exposure. Perfluorooctanoate, perfluorohexane sulfonate (PFHxS), and perfluorobutane sulfonate were administered to male and female mice via drinking water. Perfluorooctane sulfonate, perfluorononanoate, 6:2 fluorotelomer sulfonate, and PFHxS were administered to male and female mice via oral gavage. Blood samples collected after 14 or 21 and 28 d of exposure were analyzed for individual PFAS concentrations via liquid chromatography-tandem mass spectrometry. In general, a plateau in serum concentration in this toxicity test-relevant timeline depended on interactions between 1) the type of PFAS (i.e., perfluoroalkyl sulfonic acids [PFSAs] vs perfluoroalkyl carboxylic acids [PFCAs] vs polyfluorinated), 2) continuous versus bolus dosing, and 3) to a lesser extent, sex. Specifically, PFCAs were detected at higher concentration in females than males, whereas PFSAs were generally detected at similar levels across sex. An exception occurred when PFHxS yielded higher serum levels in males than females through bolus, but not continuous, dosing. Type of PFAS had the largest impact on serum concentrations, whereas sex had the lowest. As such, future work on the toxicokinetics of PFAS in common ecological receptors would be valuable to further explore these patterns. Environ Toxicol Chem 2021;40:2886-2898. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Alkanesulfonic Acids/toxicity , Animals , Carboxylic Acids/analysis , Female , Fluorocarbons/analysis , Fluorocarbons/toxicity , Male , Mice , Peromyscus , Toxicokinetics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
8.
Environ Toxicol Chem ; 39(1): 220-228, 2020 01.
Article in English | MEDLINE | ID: mdl-31610606

ABSTRACT

In the present study, the effects of short-term methoxychlor exposure on the viability, reproduction, and locomotor behavior of adult seminole ramshorn snails (Planorbella duryi) was assessed. To examine impacts on viability and behavior, individuals were exposed to a water control, vehicle control, or 12.5, 50, 100, 250, 500, or 1000 µg/L of methoxychlor for 48 h; and differences in mortality and locomotor behavior assessed using the freely available ToxTrac software. To determine impacts on reproduction, pairs of snails were exposed to a vehicle control and 12.5, 25, 50, 100, and 250 µg/L of methoxychlor for 9 d; and the number of clutches and eggs laid quantified every 24 h. Methoxychlor concentrations in treatments were determined using gas chromatography. Complete mortality was observed in the 500 µg/L and 1000 µg/L treatments after 48 h and in the 250 µg/L treatment after 9 d. Decreases in the number of egg clutches were observed in all treatments, and the number of eggs laid decreased starting in the 25 µg/L treatment. Decreases in average speed, mobile speed, and total distance traveled, as well as a significant increase in frozen events, were also observed. Our results suggest that methoxychlor exposure causes detrimental effects on several nonlethal endpoints in a nonmodel aquatic invertebrate species and that the analysis of locomotor behaviors serves as a reliable, sensitive endpoint for ecotoxicology testing. Environ Toxicol Chem 2019;39:220-228. © 2019 SETAC.


Subject(s)
Behavior, Animal/drug effects , Locomotion/drug effects , Methoxychlor/toxicity , Snails/drug effects , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Female , Reproduction/drug effects , Snails/physiology , Time Factors
9.
Environ Toxicol Chem ; 38(12): 2637-2650, 2019 12.
Article in English | MEDLINE | ID: mdl-31436847

ABSTRACT

The Japanese quail (Coturnix japonica) egg bioassay was used to directly compare the toxicity of 3,3',4,4',5-pentachlorobiphenyl (PCB 126), 3,3',4,4'-tetrachlorobiphenyl (PCB 77), and 2 environmentally relevant polychlorinated biphenyl (PCB) mixtures over specified dose ranges relative to vehicle and uninjected controls. Measures included lethality and deformities. Results showed clear dose-response relationships for PCB 126 and the 2 PCB mixtures by logistic analysis of covariance using a varying threshold model because there was a low but significant slope for mortality of vehicle controls over incubation. No dose-dependent increase in mortality was observed with PCB 77 treatment. Mortality increased above baseline for PCB 126 and the 2 mixtures after embryonic day 7 (ED07) to a stable slope from ED10. Median lethal doses and thresholds for response differed for PCB 126 and the 2 PCB mixtures, with the mixtures having lower initial toxicity and all showing progressively greater toxicity over the course of development. Further, the lethality of the PCB mixtures appeared to involve both aryl hydrocarbon receptor (AhR) and non-AhR mechanisms. Incidence of deformities was unrelated to treatments. In summary, complex mixtures of PCBs were lethal in a dose-related manner, with sublethal effects from exposure to PCB 77. Environ Toxicol Chem 2019;38:2637-2650. © 2019 SETAC.


Subject(s)
Coturnix/growth & development , Ovum/drug effects , Polychlorinated Biphenyls/toxicity , Animals , Coturnix/genetics , Coturnix/metabolism , Female , Male , Ovum/growth & development , Ovum/metabolism , Polychlorinated Biphenyls/analysis , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
10.
Environ Toxicol Chem ; 37(10): 2513-2522, 2018 10.
Article in English | MEDLINE | ID: mdl-29947098

ABSTRACT

Studies were conducted to develop methods to assess the effects of a complex mixture of polychlorinated biphenyls (PCBs) in the domestic chicken (Gallus domesticus). Treatments were administered by egg injection to compare embryonic effects of an environmentally relevant PCB congener mixture in the domestic chicken over a range of doses. Chicken eggs were injected with the PCB mixture with a profile similar to that found in avian eggs collected on the upper Hudson River, New York, USA, at doses that spanned 0 to 98 µg/g egg. Eggs were hatched in the laboratory to ascertain hatching success. In the domestic chicken, the median lethal dose was 0.3 µg/g. These data demonstrate adverse effects of an environmentally relevant PCB mixture and provide the basis for further work using in vitro and other models to characterize the potential risk to avian populations. Environ Toxicol Chem 2018;37:2513-2522. © 2018 SETAC.


Subject(s)
Animals, Domestic/embryology , Environmental Pollutants/toxicity , Polychlorinated Biphenyls/toxicity , Animals , Chick Embryo , Liver/drug effects , Liver/pathology , New York , Organ Size/drug effects , Rivers , Thyroid Gland/drug effects , Thyroid Gland/pathology
11.
J Toxicol Environ Health A ; 81(15): 691-704, 2018.
Article in English | MEDLINE | ID: mdl-29932843

ABSTRACT

The upper Hudson River was contaminated with polychlorinated biphenyls (PCB) Aroclor mixtures from the 1940s until the late 1970s. Several well-established biomarkers, such as induction of hepatic cytochrome P450 monooxygenases, were used to measure exposure to PCBs and similar contaminants in birds. In the present study, Japanese quail eggs were injected with a PCB mixture based upon a congener profile found in spotted sandpiper eggs at the upper Hudson River and subsequently, RNA was extracted from hatchling liver tissue for hybridization to a customized chicken cDNA microarray. Nominal concentrations of the mixture used for microarray hybridization were 0, 6, 12, or 49 µg/g egg. Hepatic gene expression profiles were analyzed using cluster and pathway analyses. Results showed potentially useful biomarkers of both exposure and effect attributed to PCB mixture. Biorag and Ingenuity Pathway Analysis® analyses revealed differentially expressed genes including those involved in glycolysis, xenobiotic metabolism, replication, protein degradation, and tumor regulation. These genes included cytochrome P450 1A5 (CYP1A5), cytochrome b5 (CYB5), NADH-cytochrome b5 reductase, glutathione S-transferase (GSTA), fructose bisphosphate aldolase (ALDOB), glycogen phosphorylase, carbonic anhydrase, and DNA topoisomerase II. CYP1A5, CYB5, GSTA, and ALDOB were chosen for quantitative real-time polymerase chain reaction confirmation, as these genes exhibited a clear dose response on the array. Data demonstrated that an initial transcriptional profile associated with an environmentally relevant PCB mixture in Japanese quail occurred.


Subject(s)
Coturnix/metabolism , Environmental Exposure , Environmental Monitoring/methods , Environmental Pollutants/analysis , Polychlorinated Biphenyls/analysis , Transcriptome , Animals , Animals, Newborn , Biomarkers/analysis , Coturnix/genetics , Coturnix/growth & development , Liver/metabolism , Oligonucleotide Array Sequence Analysis , Ovum/chemistry
12.
Environ Toxicol Chem ; 37(1): 126-135, 2018 01.
Article in English | MEDLINE | ID: mdl-28865120

ABSTRACT

The avian embryo is an excellent model for testing adverse developmental effects of environmental chemicals as well as uptake and movement of xenobiotics within the egg compartments. Before incubation at embryonic day 0, 14 C 3,3',4,4'-tetrachlorobiphenyl (14 C PCB 77) was injected into Japanese quail eggs either onto the air cell or into the albumen. All egg components were collected on embryonic day 1, 5, or 10, and concentrations of 14 C PCB 77 were measured in various egg components (shell, membrane, yolk, albumen, and embryo). The results showed measurable 14 C PCB 77 in all egg components, with changing concentrations in each egg component over the course of embryonic development. Specifically, concentrations in the shell content decreased between embryonic days 1 and 10, increased in albumen from embryonic days 1 to 5 and then decreased at embryonic day 10, and increased in both yolk and embryo from embryonic days 1 to 10. Vehicle and injection site both influenced 14 C PCB 77 allantoic fluid concentrations, with little effect on other egg components except for the inner shell membrane. The fatty acid vehicle injected into the albumen yielded the highest 14 C PCB 77 recovery. These findings demonstrate dynamic movement of toxicants throughout the egg components during avian embryonic development and a steady increase of relatively low levels of 14 C PCB 77 in the embryo compared with the yolk, albumen, and shell, suggesting that embryonic uptake (i.e., exposure) mirrors utilization of egg components for nutrition and growth during development. Environ Toxicol Chem 2018;37:126-135. © 2017 SETAC.


Subject(s)
Coturnix/embryology , Coturnix/metabolism , Egg Yolk/metabolism , Embryo, Nonmammalian/metabolism , Ovum/metabolism , Polychlorinated Biphenyls/administration & dosage , Polychlorinated Biphenyls/metabolism , Radiopharmaceuticals/metabolism , Animals , Chorioallantoic Membrane/blood supply , Egg Shell/metabolism , Egg Yolk/chemistry , Embryonic Development
13.
Gen Comp Endocrinol ; 190: 194-202, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23773971

ABSTRACT

Environmental pollutants encompass a vast array of compounds. Most studies in birds have focused on toxicological effects, with little attention to non-lethal effects. Consequently, it has proven difficult to assess potential risk associated with exposure to endocrine disrupting chemicals (EDCs). Assessing potential adverse effects due to exposure is further complicated by the great variation that occurs across avian species. These include variations in reproductive strategies, life span, sexual differentiation, and migration. Differences in reproductive strategies, particularly in the developmental patterns and mechanisms for precocial and altricial chicks, predispose birds to wide variations in response to steroids and steroid-like EDCs. We have investigated the effects of EDCs in precocial birds including Japanese quail (Coturnix japonica) and mallard ducks (Anas platyrhynchos) as well as in wild altricial songbirds. Studies in Japanese quail characterized endogenous steroid hormone changes during development and have demonstrated that the developing embryo uses the yolk as a 'steroid hormone depot'. It appears that actual embryonic exposure is quantitatively lower than indicated by the treatment in egg injections and that the true amount of compound necessary for bioactivity may be quite low relative to the actual dosage delivered. Additionally, embryonic exposure to specific EDCs adversely affected sexual differentiation in quail, especially impacting male sexual behavior as well as neural systems, immune response, and thyroid hormones. Many of these studies considered single compounds; however, wild birds are exposed to complex mixtures and multiple compounds. We tested complex mixtures of polychlorinated biphenyls (PCBs) at concentrations that bracketed those found in eggs in contaminated regions. Results indicated that the predictive value of the toxic equivalency (TEQ), based on comparative activation of the aryl hydrocarbon receptor (AhR) relative to dioxin was not as accurate as expected. We discuss the potential of developing an endocrine disruption index (EDI) to bridge the inconsistencies observed between responses predicted by the TEQ and those observed in vivo following exposure to EDCs. Further, we will discuss how an EDI would complement the adverse outcome pathways analyses to consider the range of effects of endocrine disruptors in birds.


Subject(s)
Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Neurosecretory Systems/drug effects , Neurosecretory Systems/metabolism , Animals , Birds/metabolism , Male , Quail/metabolism , Reproduction/drug effects , Sex Differentiation/physiology , Sexual Behavior, Animal/physiology
14.
Gen Comp Endocrinol ; 163(1-2): 104-8, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19457435

ABSTRACT

Endocrine disrupting chemicals (EDCs) from a variety of sources occur widely in the environment, but relationships between exposure to EDCs and long term effects on bird populations can be difficult to prove. Embryonic exposure to EDCs may be particularly detrimental, with potential long-term effects on reproduction and ultimately individual fitness. Because many EDCs may have subtle sublethal effects, it is necessary to establish sensitive end points as biomarkers of EDC exposure in birds. Because the effects of EDCs may be both short- and long-term, it is important to determine if embryonic exposure impacts sexual differentiation and development of the reproductive axis in hatchlings and if there are effects on reproductive function in adults. Our studies have focused on the effects of estrogen- and androgen-active EDCs on the hypothalamic gonadotropin releasing hormone-I (GnRH-I) system in an avian model of precocial species, the Japanese quail. Estrogen- or androgen-active EDCs were administered between 0 and embryonic day 4, and hypothalamic GnRH-I was measured in hatchlings and adults. Treatment with vinclozolin and PCB126 depressed the concentration of embryonic GnRH-I peptide while methoxyclor had an inconsistent stimulatory effect. Treatment with atrazine or trenbolone had no significant effects on hypothalamic GnRH-I in adults. Overall these observations support the view that the developing avian GnRH-I neural system may be vulnerable to EDCs with potential to alter lifelong reproductive function.


Subject(s)
Coturnix/physiology , Endocrine Disruptors/toxicity , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/drug effects , Reproduction/drug effects , Animals , Coturnix/embryology , Coturnix/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...