Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009886

ABSTRACT

Despite the re-emergence of the pioneering "Coley's toxin" concept in anti-cancer immune therapies highlighted by check-point inhibitors and CAR-T approaches, fundamental mechanisms responsible for the immune-enhancing efficacy of low-dose "Coley's toxin" remain poorly understood. This study examines the novel reprogramming of immune-enhancing neutrophils by super-low dose endotoxin conducive for anti-cancer therapies. Through integrated analyses including scRNAseq and functional characterizations, we examined the efficacy of reprogrammed neutrophils in treating experimental cancer. We observed that neutrophils trained by super-low dose endotoxin adopt a potent immune-enhancing phenotype characterized by CD177loCD11bloCD80hiCD40hiDectin2hi. Both murine and human neutrophils trained by super-low dose endotoxin exhibit relieved suppression of adaptive T cells as compared to un-trained neutrophils. Functionally, neutrophils trained by super-low dose endotoxin can potently reduce tumor burden when transfused into recipient tumor-bearing mice. Mechanistically, Super-low dose endotoxin enables the generation of immune-enhancing neutrophils through activating STAT5 and reducing innate suppressor IRAK-M. Together, our data clarify the long-held mystery of "Coley's toxin" in rejuvenating anti-tumor immune defense, and provide a proof-of-concept in developing innate neutrophil-based anti-tumor therapeutics.

2.
J Trauma Acute Care Surg ; 93(2S Suppl 1): S102-S109, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35609333

ABSTRACT

BACKGROUND: The two approaches to vascularized tissue machine perfusion use either the open (nonpressurized) or closed (pressurized) perfusion system. Most studies describing isolated limb perfusion preservation rely on open perfusion systems and report tissue edema exceeding 40% after 12 to 14 hours of preservation. A variant of machine perfusion places the limb and perfusate into a reservoir closed to atmosphere. It is hypothesized that the reservoir pressure, acting as a transmural pressure, has the advantage of reducing edema formation by counteracting the hydrostatic pressure gradient from the perfusion pressure. This proof-of-concept study aim was to demonstrate feasibility of the Universal Limb Stasis System for Extended Storage (ULiSSES) device (closed, vertical perfusion system) to preserve forelimbs of Sus scrofa swine for 24 hours of subnormothermic perfusion compared with an open, horizontal perfusion system. The ULiSSES is a compact, practical device that applies pulsatile, pressurized perfusion through the novel use of a diaphragm pump powered by compressed oxygen. METHODS: Forelimbs from swine were preserved in ULiSSES device (closed perfusion system) (n = 9) and in an open perfusion system (n = 4) using subnormothermic modified Krebs-Henseleit solution. Physiological parameters were measured at the start and every 3 hours for 24 hours. Limbs were weighed before and after perfusion to compare weight gain. Edema and cellular integrity were evaluated using histopathology pre and post perfusion. RESULTS: Closed perfusion system showed superiority compared with the open perfusion system in terms of oxygen consumption, reduction in vascular resistance, and overall tissue integrity. The closed perfusion system demonstrated a 21% reduction in weight gain compared with the open perfusion system and significantly reduced intracellular edema. CONCLUSION: The ULiSSES closed, pressurized perfusion technology has translatable military applications with the potential to preserve porcine limbs for 24 hours with improved results compared with an open perfusion system.


Subject(s)
Extracorporeal Circulation , Organ Preservation , Animals , Organ Preservation/methods , Perfusion/methods , Proof of Concept Study , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...