Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 109, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168026

ABSTRACT

Host anti-viral factors are essential for controlling SARS-CoV-2 infection but remain largely unknown due to the biases of previous large-scale studies toward pro-viral host factors. To fill in this knowledge gap, we perform a genome-wide CRISPR dropout screen and integrate analyses of the multi-omics data of the CRISPR screen, genome-wide association studies, single-cell RNA-Seq, and host-virus proteins or protein/RNA interactome. This study uncovers many host factors that are currently underappreciated, including the components of V-ATPases, ESCRT, and N-glycosylation pathways that modulate viral entry and/or replication. The cohesin complex is also identified as an anti-viral pathway, suggesting an important role of three-dimensional chromatin organization in mediating host-viral interaction. Furthermore, we discover another anti-viral regulator KLF5, a transcriptional factor involved in sphingolipid metabolism, which is up-regulated, and harbors genetic variations linked to COVID-19 patients with severe symptoms. Anti-viral effects of three identified candidates (DAZAP2/VTA1/KLF5) are confirmed individually. Molecular characterization of DAZAP2/VTA1/KLF5-knockout cells highlights the involvement of genes related to the coagulation system in determining the severity of COVID-19. Together, our results provide further resources for understanding the host anti-viral network during SARS-CoV-2 infection and may help develop new countermeasure strategies.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Genome-Wide Association Study , Multiomics , Antiviral Agents/pharmacology
2.
Clin Immunol ; 258: 109874, 2024 01.
Article in English | MEDLINE | ID: mdl-38113962

ABSTRACT

Sle1 and Faslpr are two lupus susceptibility loci that lead to manifestations of systemic lupus erythematosus. To evaluate the dosage effects of Faslpr in determining cellular and serological phenotypes associated with lupus, we developed a new C57BL/6 (B6) congenic lupus strain, B6.Sle1/Sle1.Faslpr/+ (Sle1homo.lprhet) and compared it with B6.Faslpr/lpr (lprhomo), B6.Sle1/Sle1 (Sle1homo), and B6.Sle1/Sle1.Faslpr/lpr (Sle1homo.lprhomo) strains. Whereas Sle1homo.lprhomo mice exhibited profound lymphoproliferation and early mortality, Sle1homo.lprhet mice had a lifespan comparable to B6 mice, with no evidence of splenomegaly or lymphadenopathy. Compared to B6 monogenic lupus strains, Sle1homo.lprhet mice exhibited significantly elevated serum ANA antibodies and increased proteinuria. Additionally, Sle1homo.lprhet T cells had an increased propensity to differentiate into Th1 cells. Gene dose effects of Faslpr were noted in upregulating serum IL-1⍺, IL-2, and IL-27. Taken together, Sle1homo.lprhet strain is a new C57BL/6-based model of lupus, ideal for genetic studies, autoantibody repertoire investigation, and for exploring Th1 effector cell skewing without early-age lymphoproliferative autoimmunity.


Subject(s)
Lupus Erythematosus, Systemic , Mice , Animals , Mice, Inbred C57BL , Lupus Erythematosus, Systemic/genetics , Autoimmunity , Cell Differentiation , Gene Dosage , Mice, Inbred MRL lpr
3.
J Immunother Cancer ; 9(2)2021 02.
Article in English | MEDLINE | ID: mdl-33589527

ABSTRACT

BACKGROUND: Despite approval of immunotherapy for a wide range of cancers, the majority of patients fail to respond to immunotherapy or relapse following initial response. These failures may be attributed to immunosuppressive mechanisms co-opted by tumor cells. However, it is challenging to use conventional methods to systematically evaluate the potential of tumor intrinsic factors to act as immune regulators in patients with cancer. METHODS: To identify immunosuppressive mechanisms in non-responders to cancer immunotherapy in an unbiased manner, we performed genome-wide CRISPR immune screens and integrated our results with multi-omics clinical data to evaluate the role of tumor intrinsic factors in regulating two rate-limiting steps of cancer immunotherapy, namely, T cell tumor infiltration and T cell-mediated tumor killing. RESULTS: Our studies revealed two distinct types of immune resistance regulators and demonstrated their potential as therapeutic targets to improve the efficacy of immunotherapy. Among them, PRMT1 and RIPK1 were identified as a dual immune resistance regulator and a cytotoxicity resistance regulator, respectively. Although the magnitude varied between different types of immunotherapy, genetically targeting PRMT1 and RIPK1 sensitized tumors to T-cell killing and anti-PD-1/OX40 treatment. Interestingly, a RIPK1-specific inhibitor enhanced the antitumor activity of T cell-based and anti-OX40 therapy, despite limited impact on T cell tumor infiltration. CONCLUSIONS: Collectively, the data provide a rich resource of novel targets for rational immuno-oncology combinations.


Subject(s)
CRISPR-Cas Systems , Genomics , Neoplasms/genetics , Tumor Escape/genetics , Tumor Microenvironment/genetics , Animals , Cell Line, Tumor , Cytotoxicity, Immunologic/genetics , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/immunology , Neoplasms/therapy , Protein-Arginine N-Methyltransferases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Repressor Proteins/genetics , T-Lymphocytes/immunology , Tumor Microenvironment/immunology
4.
Bioinformatics ; 36(5): 1492-1500, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31591642

ABSTRACT

MOTIVATION: High-throughput phenomic projects generate complex data from small treatment and large control groups that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of temporally local controls that maximizes analytic power while minimizing noise from unspecified environmental factors. RESULTS: Here we introduce 'soft windowing', a methodological approach that selects a window of time that includes the most appropriate controls for analysis. Using phenotype data from the International Mouse Phenotyping Consortium (IMPC), adaptive windows were applied such that control data collected proximally to mutants were assigned the maximal weight, while data collected earlier or later had less weight. We applied this method to IMPC data and compared the results with those obtained from a standard non-windowed approach. Validation was performed using a resampling approach in which we demonstrate a 10% reduction of false positives from 2.5 million analyses. We applied the method to our production analysis pipeline that establishes genotype-phenotype associations by comparing mutant versus control data. We report an increase of 30% in significant P-values, as well as linkage to 106 versus 99 disease models via phenotype overlap with the soft-windowed and non-windowed approaches, respectively, from a set of 2082 mutant mouse lines. Our method is generalizable and can benefit large-scale human phenomic projects such as the UK Biobank and the All of Us resources. AVAILABILITY AND IMPLEMENTATION: The method is freely available in the R package SmoothWin, available on CRAN http://CRAN.R-project.org/package=SmoothWin. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Population Health , Software , Animals , Genetic Association Studies , Humans , Mice , Phenotype
6.
Commun Biol ; 1: 236, 2018.
Article in English | MEDLINE | ID: mdl-30588515

ABSTRACT

Despite advances in next generation sequencing technologies, determining the genetic basis of ocular disease remains a major challenge due to the limited access and prohibitive cost of human forward genetics. Thus, less than 4,000 genes currently have available phenotype information for any organ system. Here we report the ophthalmic findings from the International Mouse Phenotyping Consortium, a large-scale functional genetic screen with the goal of generating and phenotyping a null mutant for every mouse gene. Of 4364 genes evaluated, 347 were identified to influence ocular phenotypes, 75% of which are entirely novel in ocular pathology. This discovery greatly increases the current number of genes known to contribute to ophthalmic disease, and it is likely that many of the genes will subsequently prove to be important in human ocular development and disease.

7.
Cell Rep ; 24(9): 2506-2519, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30157441

ABSTRACT

Retinal function relies on precisely organized neurons and synapses and a properly patterned vasculature to support them. Alterations in these features can result in vision loss. However, our understanding of retinal organization pathways remains incomplete because of a lack of methods to rapidly identify neuron and vasculature regulators in mammals. Here we developed a pipeline for the identification of neural and synaptic integrity genes by high-throughput retinal screening (INSiGHT) that analyzes candidate expression, vascular patterning, cellular organization, and synaptic arrangement. Using this system, we examined 102 mutant mouse lines and identified 16 unique retinal regulatory genes. Fifteen of these candidates are identified as novel retina regulators, and many (9 of 16) are associated with human neural diseases. These results expand the genetic landscape involved in retinal circuit organization and provide a road map for continued discovery of mammalian retinal regulators and disease-causing alleles.


Subject(s)
Neurons/physiology , Retina/physiology , Humans , Synapses
8.
Dev Biol ; 419(2): 229-236, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27671873

ABSTRACT

In this work, we report the use of iodine-contrast microCT to perform high-throughput 3D morphological analysis of mouse embryos and neonates between embryonic day 8.5 to postnatal day 3, with high spatial resolution up to 3µm/voxel. We show that mouse embryos at early stages can be imaged either within extra embryonic tissues such as the yolk sac or the decidua without physically disturbing the embryos. This method enables a full, undisturbed analysis of embryo turning, allantois development, vitelline vessels remodeling, yolk sac and early placenta development, which provides increased insights into early embryonic lethality in mutant lines. Moreover, these methods are inexpensive, simple to learn and do not require substantial processing time, making them ideal for high throughput analysis of mouse mutants with embryonic and early postnatal lethality.


Subject(s)
Embryonic Development , Imaging, Three-Dimensional/methods , Mice/embryology , X-Ray Microtomography/methods , Animals , Animals, Newborn , Contrast Media , Decidua/ultrastructure , Female , Genes, Lethal , Genetic Association Studies , Gestational Age , Hydrogels , Iodine , Phenotype , Staining and Labeling/methods , Yolk Sac/ultrastructure
9.
J Immunol ; 193(10): 5264-72, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25288568

ABSTRACT

The Th1-associated chemokines CXCL9, CXCL10, and CXCL11 coordinate migration of CXCR3(+) Th1 cells. The objective of this study was to evaluate the role of the innate immune system in stimulating chemokine expression in an experimental model of dry eye and bridge the gap between innate and adaptive immunity. Desiccating stress (DS) induced very early (6 h) expression and production of Th1-associated chemokines in cornea and conjunctiva of C57BL/6 and RAG1 knockout (KO) mice, demonstrating that chemokine expression does not require innate T cells. We then demonstrated that activating the innate immune system prior to adoptive transfer of T cells to RAG1KO mice increased disease severity. Interestingly, lack of induction of chemokines CXCL9, CXCL10, and CXCL11 in IFN-γKO mice provided evidence that their expression requires IFN-γ for induction. Treatment of RAG1KO mice with anti-NK1.1 prevented the increase of CXCL9, CXCL10, and CXCL11 in response to DS, compared with isotype controls. Additionally, DS increased the expression of NKG2D in the conjunctiva. The expression of the NKG2D ligand, retinoic acid early inducible gene 1, also increased at the ocular surface at both the protein and gene levels. Neutralization of NKG2D at the ocular surface decreased the expression of CXCL9, CXCL10, CXCL11, and IFN-γ. In summary, upregulation of CXCL9, CXCL10, and CXCL11 expression in experimental dry eye is T cell-independent, requiring IFN-γ-producing NKG2D(+) NK cells that are activated in response to DS-induced stress signals. This study provides insight into the events that trigger the initial immune response in dry eye pathology.


Subject(s)
Epithelium, Corneal/immunology , Immunity, Innate , Interferon-gamma/immunology , Membrane Proteins/immunology , NK Cell Lectin-Like Receptor Subfamily K/immunology , Xerophthalmia/immunology , Adoptive Transfer , Animals , Antibodies/pharmacology , Antigens, Ly/genetics , Antigens, Ly/immunology , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Chemokine CXCL11/genetics , Chemokine CXCL11/immunology , Chemokine CXCL9/genetics , Chemokine CXCL9/immunology , Conjunctiva/immunology , Conjunctiva/pathology , Desiccation , Disease Models, Animal , Epithelium, Corneal/pathology , Female , Gene Deletion , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/immunology , Interferon-gamma/genetics , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , NK Cell Lectin-Like Receptor Subfamily B/antagonists & inhibitors , NK Cell Lectin-Like Receptor Subfamily B/genetics , NK Cell Lectin-Like Receptor Subfamily B/immunology , NK Cell Lectin-Like Receptor Subfamily K/genetics , T-Lymphocytes/immunology , T-Lymphocytes/pathology , T-Lymphocytes/transplantation , Xerophthalmia/genetics , Xerophthalmia/pathology
10.
PLoS One ; 8(9): e74522, 2013.
Article in English | MEDLINE | ID: mdl-24040270

ABSTRACT

Diminished estrogen influence at menopause is reported to be associated with cognitive decline, heightened anxiety and hypertension. While estrogen therapy is often prescribed to overcome these behavioral and physiological deficits, antioxidants which have been shown beneficial are gaining nutritional intervention and popularity. Therefore, in the present study, utilizing the antioxidant properties of grapes, we have examined effect of 3 weeks of grape powder (GP; 15 g/L dissolved in tap water) treatment on anxiety-like behavior, learning-memory impairment and high blood pressure in ovariectomized (OVX) rats. Four groups of female Wistar rats were used; sham control, sham-GP treated, OVX and OVX+GP treated. We observed a significant increase in systolic and diastolic blood pressure in OVX rats as compared to sham-controls. Furthermore, ovariectomy increased anxiety-like behavior and caused learning and memory impairment in rats as compared to sham-controls. Interestingly, providing grape powder treated water to OVX rats restored both systolic and diastolic blood pressure, decreased anxiety-like behavior and improved memory function. Moreover, OVX rats exhibited an impaired long term potentiation which was restored with grape powder treatment. Furthermore, ovariectomy increased oxidative stress in the brain, serum and urine, selectively decreasing antioxidant enzyme, glyoxalase-1 protein expression in the hippocampus but not in the cortex and amygdala of OVX rats, while grape powder treatment reversed these effects. Other antioxidant enzyme levels, including manganese superoxide dismutase (SOD) and Cu/Zn SOD remained unchanged. We suggest that grape powder by regulating oxidative stress mechanisms exerts its protective effect on blood pressure, learning-memory and anxiety-like behavior. Our study is the first to examine behavioral, biochemical, physiological and electrophysiological outcome of estrogen depletion in rats and to test protective role of grape powder, all in the same study.


Subject(s)
Anxiety/prevention & control , Estrogens/deficiency , Hypertension/prevention & control , Memory Disorders/prevention & control , Plant Extracts/pharmacology , Vitis/chemistry , Animals , Anxiety/etiology , Anxiety/metabolism , Blood Pressure/drug effects , Female , Gene Expression/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Hypertension/etiology , Hypertension/metabolism , Lactoylglutathione Lyase/genetics , Lactoylglutathione Lyase/metabolism , Long-Term Potentiation/drug effects , Maze Learning/drug effects , Memory Disorders/etiology , Memory Disorders/metabolism , Ovariectomy/adverse effects , Powders , Rats , Rats, Wistar , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
11.
J Nutr ; 143(9): 1406-13, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23864508

ABSTRACT

Aging-associated declines in cognitive, emotional, and cardiovascular function are well known. Environmental stress triggers critical changes in the brain, further compromising cardiovascular and behavioral health during aging. Excessive dietary salt intake is one such stressor. Here, we tested the effect of high salt (HS) on anxiety, learning-memory function, and blood pressure (BP) in male Fischer brown Norway (FBN) rats. Adult (A; 2 mo) and old (O; 20 mo) male rats were fed normal-salt (NS; 0.4% NaCl) or HS (8% NaCl) diets for 4 wk after being implanted with telemeter probes for conscious BP measurement. Thereafter, tests to assess anxiety-like behavior and learning-memory were conducted. The rats were then killed, and samples of plasma, urine, and brain tissue were collected. We found that systolic BP was higher in O-NS (117 ± 1.2 mm Hg) than in A-NS (105 ± 0.8 mm Hg) rats (P < 0.05). Furthermore, BP was higher in O-HS (124 ± 1.4 mm Hg) than in O-NS (117 ± 1.2 mm Hg) rats (P < 0.05). Moreover, anxiety-like behavior (light-dark and open-field tests) was not different between A-NS and O-NS rats but was greater in O-HS rats than in A-NS, O-NS, or A-HS rats (P < 0.05). Short-term memory (radial arm water maze test) was similar in A-NS and O-NS rats but was significantly impaired in O-HS rats compared with A-NS, O-NS, or A-HS rats (P < 0.05). Furthermore, oxidative stress variables (in plasma, urine, and brain) as well as corticosterone (plasma) were greater in O-HS rats when compared with A-NS, O-NS, or A-HS rats (P < 0.05). The antioxidant enzyme glyoxalase-1 expression was selectively reduced in the hippocampus and amygdala of O-HS rats compared with A-NS, O-NS, or A-HS rats (P < 0.05), whereas other antioxidant enzymes, glutathione reductase 1, manganese superoxide dismutase (SOD), and Cu/Zn SOD remained unchanged. We suggest that salt-sensitive hypertension and behavioral derangement are associated with a redox imbalance in the brain of aged FBN rats.


Subject(s)
Aging , Anxiety , Diet , Hypertension , Memory, Short-Term , Sodium Chloride, Dietary/adverse effects , 8-Hydroxy-2'-Deoxyguanosine , Animals , Anxiety/physiopathology , Blood Pressure , Corticosterone/blood , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/urine , Dinoprost/analogs & derivatives , Dinoprost/blood , Disease Models, Animal , Gene Expression Regulation , Glutathione Reductase/metabolism , Hypertension/physiopathology , Lactoylglutathione Lyase/metabolism , Learning , Male , Oxidative Stress , Rats , Sodium Chloride, Dietary/administration & dosage , Superoxide Dismutase/metabolism
12.
J Nutr ; 143(6): 835-42, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23596160

ABSTRACT

We examined whether or not grape powder treatment ameliorates oxidative stress-induced anxiety-like behavior, memory impairment, and hypertension in rats. Oxidative stress in Sprague-Dawley rats was produced by using L-buthionine-(S,R)-sulfoximine (BSO). Four groups of rats were used: 1) control (C; injected with vehicle and provided with tap water), 2) grape powder-treated (GP; injected with vehicle and provided for 3 wk with 15 g/L grape powder dissolved in tap water), 3) BSO-treated [injected with BSO (300 mg/kg body weight), i.p. for 7 d and provided with tap water], and 4) BSO plus grape powder-treated (GP+BSO; injected with BSO and provided with grape powder-treated tap water). Anxiety-like behavior was significantly greater in BSO rats compared with C or GP rats (P < 0.05). Grape powder attenuated BSO-induced anxiety-like behavior in GP+BSO rats. BSO rats made significantly more errors in both short- and long-term memory tests compared with C or GP rats (P < 0.05), which was prevented in GP+BSO rats. Systolic and diastolic blood pressure was significantly greater in BSO rats compared with C or GP rats (P < 0.05), whereas grape powder prevented high blood pressure in GP+BSO rats. Furthermore, brain extracellular signal-regulated kinase-1/2 (ERK-1/2) was activated (P < 0.05), whereas levels of glyoxalase-1 (GLO-1), glutathione reductase-1 (GSR-1), calcium/calmodulin-dependent protein kinase type IV (CAMK-IV), cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF) were significantly less (P < 0.05) in BSO but not in GP+BSO rats compared with C or GP rats. We suggest that by regulating brain ERK-1/2, GLO-1, GSR-1, CAMK-IV, CREB, and BDNF levels, grape powder prevents oxidative stress-induced anxiety, memory impairment, and hypertension in rats.


Subject(s)
Anxiety/prevention & control , Fruit/chemistry , Hypertension/prevention & control , Memory Disorders/prevention & control , Oxidative Stress/physiology , Vitis/chemistry , Animals , Anxiety/etiology , Behavior, Animal , Brain Chemistry , Brain-Derived Neurotrophic Factor/analysis , Buthionine Sulfoximine/administration & dosage , Calcium-Calmodulin-Dependent Protein Kinase Type 4/analysis , Cyclic AMP Response Element-Binding Protein/analysis , Dietary Supplements , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Food, Preserved , Freeze Drying , Glutathione Reductase/analysis , Hypertension/etiology , Lactoylglutathione Lyase/analysis , Male , Memory Disorders/etiology , Polyphenols/administration & dosage , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...