Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Glia ; 72(8): 1435-1450, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38613395

ABSTRACT

The plant homeodomain finger protein Phf8 is a histone demethylase implicated by mutation in mice and humans in neural crest defects and neurodevelopmental disturbances. Considering its widespread expression in cell types of the central nervous system, we set out to determine the role of Phf8 in oligodendroglial cells to clarify whether oligodendroglial defects are a possible contributing factor to Phf8-dependent neurodevelopmental disorders. Using loss- and gain-of-function approaches in oligodendroglial cell lines and primary cell cultures, we show that Phf8 promotes the proliferation of rodent oligodendrocyte progenitor cells and impairs their differentiation to oligodendrocytes. Intriguingly, Phf8 has a strong positive impact on Olig2 expression by acting on several regulatory regions of the gene and changing their histone modification profile. Taking the influence of Olig2 levels on oligodendroglial proliferation and differentiation into account, Olig2 likely acts as an important downstream effector of Phf8 in these cells. In line with such an effector function, ectopic Olig2 expression in Phf8-deficient cells rescues the proliferation defect. Additionally, generation of human oligodendrocytes from induced pluripotent stem cells did not require PHF8 in a system that relies on forced expression of Olig2 during oligodendroglial induction. We conclude that Phf8 may impact nervous system development at least in part through its action in oligodendroglial cells.


Subject(s)
Cell Proliferation , Oligodendrocyte Transcription Factor 2 , Oligodendroglia , Transcription Factors , Oligodendroglia/metabolism , Oligodendrocyte Transcription Factor 2/metabolism , Animals , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Mice , Cell Proliferation/physiology , Cell Differentiation/physiology , Cells, Cultured , Histone Demethylases/metabolism , Histone Demethylases/genetics , Rats , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Induced Pluripotent Stem Cells/metabolism
2.
Cell Death Dis ; 13(10): 887, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36270985

ABSTRACT

In humans, most neurons are born during embryonic development and have to persist throughout the entire lifespan of an individual. Thus, human neurons have to develop elaborate survival strategies to protect against accidental cell death. We set out to decipher the developmental adaptations resulting in neuronal resilience. We demonstrate that, during the time course of maturation, human neurons install a complex and complementary anti-apoptotic signaling network. This includes i.) a downregulation of central proteins of the intrinsic apoptosis pathway including several caspases, ii.) a shift in the ratio of pro- and anti-apoptotic BCL-2 family proteins, and iii.) an elaborate regulatory network resulting in upregulation of the inhibitor of apoptosis protein (IAP) XIAP. Together, these adaptations strongly increase the threshold for apoptosis initiation when confronted with a wide range of cellular stressors. Our results highlight how human neurons are endowed with complex and redundant preemptive strategies to protect against stress and cell death.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Caspases/metabolism , Apoptosis/physiology , Cell Death , Inhibitor of Apoptosis Proteins/metabolism , Neurons/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism
3.
EMBO Rep ; 23(5): e54027, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35289477

ABSTRACT

Malformations of human cortical development (MCD) can cause severe disabilities. The lack of human-specific models hampers our understanding of the molecular underpinnings of the intricate processes leading to MCD. Here, we use cerebral organoids derived from patients and genome edited-induced pluripotent stem cells to address pathophysiological changes associated with a complex MCD caused by mutations in the echinoderm microtubule-associated protein-like 1 (EML1) gene. EML1-deficient organoids display ectopic neural rosettes at the basal side of the ventricular zone areas and clusters of heterotopic neurons. Single-cell RNA sequencing shows an upregulation of basal radial glial (RG) markers and human-specific extracellular matrix components in the ectopic cell population. Gene ontology and molecular analyses suggest that ectopic progenitor cells originate from perturbed apical RG cell behavior and yes-associated protein 1 (YAP1)-triggered expansion. Our data highlight a progenitor origin of EML1 mutation-induced MCD and provide new mechanistic insight into the human disease pathology.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Cerebral Cortex/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mutation , Neurons/metabolism , Organoids/metabolism
4.
Sci Adv ; 8(6): eabl5792, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35148180

ABSTRACT

Symmetric and asymmetric cell divisions are conserved strategies for stem cell expansion and the generation of more committed progeny, respectively. Here, we demonstrate that in human neural stem cells (NSCs), lysosomes are asymmetrically inherited during mitosis. We show that lysosomes contain Notch receptors and that Notch activation occurs the acidic lysosome environment. The lysosome asymmetry correlates with the expression of the Notch target gene HES1 and the activity of Notch signaling in the daughter cells. Furthermore, an asymmetry of lysosomes and Notch receptors was also observed in a human organoid model of brain development with mitotic figures showing preferential inheritance of lysosomes and Notch receptor in that daughter cell remaining attached to the apical membrane. Thus, this study suggests a previously unknown function of lysosomes as a signaling hub to establish a bias in Notch signaling activity between daughter cells after an asymmetric cell division of human NSCs.


Subject(s)
Neural Stem Cells , Humans , Lysosomes/metabolism , Mitosis , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction/genetics
5.
J Alzheimers Dis ; 62(4): 1663-1681, 2018.
Article in English | MEDLINE | ID: mdl-29504531

ABSTRACT

Generation of amyloid-ß peptides (Aßs) by proteolytic cleavage of the amyloid-ß protein precursor (AßPP), especially increased production of Aß42/Aß43 over Aß40, and their aggregation as oligomers and plaques, represent a characteristic feature of Alzheimer's disease (AD). In familial AD (FAD), altered Aß production originates from specific mutations of AßPP or presenilins 1/2 (PS1/PS2), the catalytic subunits of γ-secretase. In sporadic AD, the origin of altered production of Aßs remains unknown. We hypothesize that the 'human chemical exposome' contains products able to favor the production of Aß42/Aß43 over Aß40 and shorter Aßs. To detect such products, we screened a library of 3500 + compounds in a cell-based assay for enhanced Aß42/Aß43 production. Nine pyrazole insecticides were found to induce a ß- and γ-secretase-dependent, 3-10-fold increase in the production of extracellular Aß42 in various cell lines and neurons differentiated from induced pluripotent stem cells derived from healthy and FAD patients. Immunoprecipitation/mass spectrometry analyses showed increased production of Aßs cleaved at positions 42/43, and reduced production of peptides cleaved at positions 38 and shorter. Strongly supporting a direct effect on γ-secretase activity, pyrazoles shifted the cleavage pattern of another γ-secretase substrate, alcadeinα, and shifted the cleavage of AßPP by highly purified γ-secretase toward Aß42/Aß43. Focusing on fipronil, we showed that some of its metabolites, in particular the persistent fipronil sulfone, also favor the production of Aß42/Aß43 in both cell-based and cell-free systems. Fipronil administered orally to mice and rats is known to be metabolized rapidly, mostly to fipronil sulfone, which stably accumulates in adipose tissue and brain. In conclusion, several widely used pyrazole insecticides enhance the production of toxic, aggregation prone Aß42/Aß43 peptides, suggesting the possible existence of environmental "Alzheimerogens" which may contribute to the initiation and propagation of the amyloidogenic process in sporadic AD.


Subject(s)
Amyloid beta-Peptides/metabolism , Insecticides/adverse effects , Peptide Fragments/metabolism , Pyrazoles/adverse effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Brain/drug effects , Brain/metabolism , Environmental Exposure , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Insecticides/chemistry , Insecticides/pharmacokinetics , Mice , Neurons/drug effects , Neurons/metabolism , Proteome/drug effects , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...