Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Patient Prefer Adherence ; 12: 2449-2455, 2018.
Article in English | MEDLINE | ID: mdl-30510408

ABSTRACT

PURPOSE: Current hypertension guidelines stipulate that all incompatible medications be stopped before performing laboratory screening for aldosteronism, but patient adherence is unclear. We measured plasma drug concentrations to determine drug adherence and potential drug bias during biochemical tests. PATIENTS AND METHODS: Plasma concentrations of 10 antihypertensive drugs were quantified by mass spectrometry in 24 consecutive ambulatory patients with uncontrolled hypertension routinely evaluated for aldosteronism. Drug screening was done before (first visit), and on the day of biochemical tests (second visit) after stopping all incompatible medications. Concentrations above those expected at trough dosing interval defined same-day dose intake. RESULTS: On the first and second visits, 76% vs 77% of prescribed antihypertensive doses could be verified in plasma. A total of 33% of patients were found to be nonadherent and showed divergent plasma drug results relative to prescriptions (21% drugs not detected/13% unprescribed drugs found) on first visit, 25% on the second (0%/25%), and 46% for both. A total of 21% used medication incompatible with the biochemical tests on the second visit. Moreover, 17% of drug concentrations were below expected trough levels on the first vs 15% on the second visit. This analysis revealed additional four (17%) vs three (13%) nonadherent patients who failed same-day dose intake and remained undetected by qualitative drug tests. CONCLUSION: Nonadherence was frequent during laboratory evaluations for aldosteronism advocating cautious interpretation of results. A multicenter study is desirable to set the stage for new screening protocols that should incorporate also incentives and checks of drug adherence.

2.
Am J Hypertens ; 31(2): 188-196, 2018 01 12.
Article in English | MEDLINE | ID: mdl-28985343

ABSTRACT

BACKGROUND: The right atrium is densely innervated and provides sensory input to important cardiocirculatory reflexes controlling cardiac output and blood pressure. Its angiotensin (Ang) II-expressing innervation may release Ang II as a neuropeptide cotransmitter to modulate reflexes but has not yet been characterized. METHODS: Intraoperative surgical biopsies from human right atria (n = 7) were immunocytologically stained for Ang II, tyrosine hydroxylase (TH), and synaptophysin (SYN). Tissue angiotensins were extracted and quantified by radioimmunoassay. RESULTS: Angiotensinergic fibers were frequent in epicardial nerves and around vessels with variable TH co-localization (none to >50%/bundle). Fibers were also widely distributed between cardiomyocytes and in the endocardium where they were typically nonvaricose, TH/SYN-negative and usually accompanied by varicose catecholaminergic fibers. In the endocardium, some showed large varicosities and were partially TH or SYN-positive. A few endocardial regions showed scattered nonvaricose Ang fibers ending directly between endothelial cells. Occasional clusters of thin varicose terminals co-localizing SYN or TH were located underneath, or protruded into, the endothelium. Endocardial density of Ang and TH-positive fibers was 30-300 vs. 200-450/mm2. Atrial Ang II, III, and I concentrations were 67, 16, and 5 fmol/g (median) while Ang IV and V were mostly undetectable. CONCLUSIONS: The human right atrium harbors an abundant angiotensinergic innervation and a novel potential source of atrial Ang II. Most peripheral fibers were noncatecholaminergic afferents or preterminal vagal efferents and a minority was presumably sympathetic. Neuronal Ang II release from these fibers may modulate cardiac and circulatory reflexes independently from plasma and tissue Ang II sources.


Subject(s)
Angiotensin II/analysis , Autonomic Nervous System/chemistry , Heart Atria/innervation , Nerve Fibers/chemistry , Reflex , Aged , Angiotensin I/analysis , Angiotensin II/analogs & derivatives , Angiotensin III/analysis , Angiotensins/analysis , Humans , Male , Middle Aged , Peptide Fragments/analysis , Synaptophysin/analysis , Tyrosine 3-Monooxygenase/analysis
3.
Histochem Cell Biol ; 147(5): 585-593, 2017 May.
Article in English | MEDLINE | ID: mdl-28220244

ABSTRACT

The renal tissular renin-angiotensin and bradykinin-kallikrein systems control kidney function together with the renal sympathetic innervation but their interaction is still unclear. To further elucidate this relationship, we investigated these systems in rats 6 days after left kidney denervation (DNX, n = 8) compared to sham-operated controls (CTR, n = 8). Plasma renin concentration was unchanged in DNX vs. CTR (p = NS). Kidney bradykinin (BK) and angiotensin (Ang) I and II concentrations decreased bilaterally in DNX vs. CTR rats (~20 to 40%, p < 0.05) together with Ang IV and V concentrations that were extremely low (p = NS). Renin, Ang III and dopamine concentrations decreased by ~25 to 50% and norepinephrine concentrations by 99% in DNX kidneys (p < 0.05) but were unaltered in opposite kidneys. Ang II/I and KA were comparable in DNX, contralateral and CTR kidneys. Ang III/II increased in right vs. DNX or CTR kidneys (40-50%, p < 0.05). Ang II was mainly located in tubular epithelium by immunocytological staining and its cellular distribution was unaffected by DNX. Moreover, the angiotensinergic and catecholaminergic innervation of right kidneys was unchanged vs. CTR. We found an important dependency of tissular Ang and BK levels on the renal innervation that may contribute to the resetting of kidney function after DNX. The DNX-induced peptide changes were not readily explained by kidney KA, renin or plasma Ang I generation. However, tissular peptide metabolism and compartmentalization may have played a central role. The mechanisms behind the concentration changes remain unclear and deserve further clarification.


Subject(s)
Angiotensins/metabolism , Bradykinin/metabolism , Denervation , Kallikreins/metabolism , Kidney/innervation , Kidney/metabolism , Renin/metabolism , Animals , Kidney/surgery , Male , Rats , Rats, Wistar
4.
J Geriatr Cardiol ; 13(11): 932-934, 2016 Nov.
Article in English | MEDLINE | ID: mdl-28133472
5.
Am J Physiol Renal Physiol ; 289(4): F645-59, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16159899

ABSTRACT

Advanced glycation end products (AGEs) are a heterogeneous group of protein and lipids to which sugar residues are covalently bound. AGE formation is increased in situations with hyperglycemia (e.g., diabetes mellitus) and is also stimulated by oxidative stress, for example in uremia. It appears that activation of the renin-angiotensin system may contribute to AGE formation through various mechanisms. Although AGEs could nonspecifically bind to basement membranes and modify their properties, they also induce specific cellular responses including the release of profibrogenic and proinflammatory cytokines by interacting with the receptor for AGE (RAGE). However, additional receptors could bind AGEs, adding to the complexity of this system. The kidney is both: culprit and target of AGEs. A decrease in renal function increases circulating AGE concentrations by reduced clearance as well as increased formation. On the other hand, AGEs are involved in the structural changes of progressive nephropathies such as glomerulosclerosis, interstitial fibrosis, and tubular atrophy. These effects are most prominent in diabetic nephropathy, but they also contribute to renal pathophysiology in other nondiabetic renal diseases. Interference with AGE formation has therapeutic potential for preventing the progression of chronic renal diseases, as shown from data of animal experiments and, more recently, the first clinical trials.


Subject(s)
Glycation End Products, Advanced/physiology , Kidney/physiology , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Extracellular Matrix Proteins/metabolism , Glycation End Products, Advanced/genetics , Glycation End Products, Advanced/metabolism , Humans , Kidney/cytology , Kidney/drug effects , Kidney/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...