Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 92(6): 063504, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34243562

ABSTRACT

L3-HAPLS (High-repetition-rate Advanced Petawatt Laser System) at ELI (Extreme Light Infrastructure) Beamlines currently delivers 0.45 PW pulses (12 J in 27 fs) at 3.3 Hz repetition rate. A fresh target surface for every shot was placed at the laser focus using an in-house tape target system designed to withstand large laser intensities and energies. It has been tested for different material thicknesses (25 and 7.6 µm), while L3-HAPLS delivered laser shots for energies ranging from 1 to 12 J. A technical description of the tape target system is given. The device can be used in diverse geometries needed for laser-matter interaction studies by providing an ≈300° free angle of view on the target in the equatorial plane. We show experimental data demonstrating the shot-to-shot stability of the device. An x-ray crystal spherical spectrometer was set up to measure the Kα yield stability, while a GHz H-field probe was used to check the shot-to-shot electromagnetic pulse generation. Finally, we discuss short and mid-term future improvements of the tape target system for efficient user operation.

2.
Rev Sci Instrum ; 85(2): 023501, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593355

ABSTRACT

A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...