Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Appl Environ Microbiol ; 60(12): 4394-403, 1994 Dec.
Article in English | MEDLINE | ID: mdl-16349459

ABSTRACT

Insertion sequence (IS) element ISRLdTAL1145-1 from Rhizobium sp. (Leucaena diversifolia) strain TAL 1145 was entrapped in the sacB gene of the positive selection vector pUCD800 by insertional inactivation. A hybridization probe prepared from the whole 2.5-kb element was used to determine the distribution of homologous sequences in a diverse collection of 135 Rhizobium and Bradyrhizobium strains. The IS probe hybridized strongly to Southern blots of genomic DNAs from 10 rhizobial strains that nodulate both Phaseolus vulgaris (beans) and Leucaena leucocephala (leguminous trees), 1 Rhizobium sp. that nodulates Leucaena spp., 9 R. meliloti (alfalfa) strains, 4 Rhizobium spp. that nodulate Sophora chrysophylla (leguminous trees), and 1 nonnodulating bacterium associated with the nodules of Pithecellobium dulce from the Leucaena cross-inoculation group, producing distinguishing IS patterns for each strain. Hybridization analysis revealed that ISRLdTAL1145-1 was strongly homologous with and closely related to a previously isolated element, ISRm USDA1024-1 from R. meliloti, while restriction enzyme analysis found structural similarities and differences between the two IS homologs. Two internal segments of these IS elements were used to construct hybridization probes of 1.2 kb and 380 bp that delineate a structural similarity and a difference, respectively, of the two IS homologs. The internal segment probes were used to analyze the structures of homologous IS elements in other strains. Five types of structural variation in homolog IS elements were found. The predominate IS structural type naturally occurring in a strain can reasonably identify the strain's cross-inoculation group relationships. Three IS structural types were found in Rhizobium species that nodulate beans and Leucaena species, one of which included the designated type IIB strain of R. tropici (CIAT 899). Weak homology to the whole IS probe, but not with the internal segments, was found with two Bradyrhizobium japonicum strains. The taxonomic and ecological implications of the distribution of ISRLdTAL1145-1 are discussed.

2.
Appl Environ Microbiol ; 58(4): 1095-101, 1992 Apr.
Article in English | MEDLINE | ID: mdl-16348680

ABSTRACT

Strain UHM-5, a pSym Exo derivative of the aluminum-tolerant Rhizobium leguminosarum bv. phaseoli strain CIAT899, was equally tolerant of aluminum (Al) as the parental culture. Dialyzed culture supernatants of the wild-type cells grown in YEM broth (10 cells ml) contained 185 mug of glucose equivalents ml whereas UHM-5 culture supernatants yielded 2 mug of glucose ml. The Exo derivative and the parental strain gave essentially similar growth in medium containing from 0 to 300 muM Al, indicating that the pSym of CIAT899, and extracellular polysaccharide, were not involved in the aluminum tolerance of this strain. However, increasing the level of Al from 80 to 150 muM increased the lag phase, induced a slight killing of the inoculum, and depressed the final populations by about fivefold. Doubling the aluminum concentration from 150 to 300 muM presented a severe aluminum stress to CIAT899 and UHM-5: the inoculum level dropped 10-fold, indicating killing of the inoculum, and remained depressed for ca. 4 days before continuing to grow slowly; the final population was decreased 15-fold relative to that of cultures grown in medium containing 80 muM Al. The production by CIAT899 of other extracellular or intracellular aluminum tolerance factors was investigated in culture by using aluminum-sensitive rhizobia as stress indicators. These experiments, conducted at 80 muM Al, demonstrated that CIAT899 produced neither extracellular nor intracellular products that could alleviate toxicity for the Al-sensitive indicator rhizobia.

3.
World J Microbiol Biotechnol ; 8(4): 387-92, 1992 Jul.
Article in English | MEDLINE | ID: mdl-24425509

ABSTRACT

Seventy-six rhizobia were isolated from the nodules ofLeucaena plants of various genotypes growing in a wide range of soil types and climatic regions. The isolates were fast-growing and acid-producing. In establishing a serological grouping for the isolates, the intrinsic antibiotic resistance (IAR) patterns to low concentrations of eight antibiotics was helpful for selecting the strains for immunization purposes. Eight distinct somatic serogroups ofLeucaena rhizobia were identified by using strain-specific fluorescent antibodies. The results indicated that use of serological markers is a more specific technique than IAR pattern for strain identification. Strains from some different serogroups had the same IAR patterns. The immunofluorescence cross-reactions ofLeucaena rhizobia serogroups among themselves and with other species of fast- and slow-growing rhizobia were very low. Sero-grouping is ideal for use in further ecological studies in field inoculation trials.

4.
Appl Environ Microbiol ; 57(5): 1540-5, 1991 May.
Article in English | MEDLINE | ID: mdl-16348492

ABSTRACT

Rhizobia classified as Bradyrhizobium spp. comprise a highly heterogeneous group of bacteria that exhibit differential symbiotic characteristics on hosts in the cowpea miscellany cross-inoculation group. To delineate the degree of specificity exhibited by four legumes in the cowpea miscellany, we tested the symbiotic characteristics of indigenous cowpea bradyrhizobia on cowpea (Vigna unguiculata), siratro (Macroptilium atropurpureum), lima bean (Phaseolus lunatus), and peanut (Arachis hypogaea). The most-probable-number counts of indigenous bradyrhizobia at three sites on Maui, Hawaii, were substantially different on the four hosts: highest on siratro, intermediate on cowpea, and significantly lower on both lima bean and peanut. Bradyrhizobia from single cowpea nodules from the most-probable-number assays were inoculated onto the four hosts. Effectiveness patterns of these rhizobia on cowpea followed a normal distribution but were strikingly different on the other legumes. The effectiveness profiles on siratro and cowpea were similar but not identical. The indigenous cowpea-derived bradyrhizobia were of only moderate effectiveness on siratro and were in all cases lower than the inoculant-quality reference strain. Between 5 and 51% of the bradyrhizobia, depending on site, failed to nodulate peanut, whereas 0 to 32% failed to nodulate lima bean. No significant correlation was observed between the relative effectiveness of the bradyrhizobia on cowpea and their corresponding effectiveness on either lima bean or peanut. At all sites, bradyrhizobia that were ineffective on cowpea but that effectively nodulated lima bean, peanut, or both were found. Eighteen percent or fewer of the bradyrhizobia were as effective on lima bean as the reference inoculant strain; 44% or fewer were as effective on peanut as the reference strain. Only 18% of all cowpea-derived bradyrhizobia tested were able to form N(2)-fixing nodules on both lima bean and peanut. These results indicate the need to measure indigenous bradyrhizobial population characteristics directly with the crop of interest to obtain an accurate assessment of the need to inoculate.

5.
Appl Environ Microbiol ; 57(4): 1038-45, 1991 Apr.
Article in English | MEDLINE | ID: mdl-16348454

ABSTRACT

The symbiotic potential of Bradyrhizobium japonicum isolates indigenous to seven Korean soils was evaluated by inoculating soybeans with 10- and 1,000-fold-diluted soil suspensions (whole-soil inocula). At both levels, significant differences in the symbiotic potential of the indigenous B. japonicum isolates were demonstrated. The relationship between rhizobial numbers in the whole-soil inocula (x) and nitrogen fixation parameters (y) was best predicted by a straight line (y = a + bx) when the numbers in the inocula were 100 to 10,000 ml, while the power curve (y = ax) predicted the variation when the numbers were 1 to 100 ml. Thirty isolates from three soils showed wide differences in effectiveness (measured as milligrams of shoot N per plant), and several were of equal or greater effectiveness than reference strain B. japonicum USDA 110 on soybean cultivars Clark and Jangbaekkong. On both of the soybean cultivars grown in a Hawaiian mollisol, the Korean B. japonicum isolate YCK 213 and USDA 110 were of equal effectiveness; USDA 110 was the superior strain in colonization (nodule occupancy). Korean isolates YCK 117 and YCK 141 were superior colonizers compared with USDA 110. However, B. japonicum USDA 123 was the superior colonizer compared with isolates YCK 213, YCK 141, and YCK 117. In an immunoblot analysis of 97 indigenous Korean isolates of B. japonicum, 41% fell into the USDA 110 and USDA 123 serogroups. Serogroups USDA 110 and USDA 123 were represented in six of the seven soils examined. In one Korean soil, 100% of the B. japonicum isolates reacted only with antisera of YCK 117, an isolate from the same soil.

6.
Appl Environ Microbiol ; 57(1): 19-28, 1991 Jan.
Article in English | MEDLINE | ID: mdl-16348393

ABSTRACT

Indigenous rhizobia in soil present a competition barrier to the establishment of inoculant strains, possibly leading to inoculation failure. In this study, we used the natural diversity of rhizobial species and numbers in our fields to define, in quantitative terms, the relationship between indigenous rhizobial populations and inoculation response. Eight standardized inoculation trials were conducted at five well-characterized field sites on the island of Maui, Hawaii. Soil rhizobial populations ranged from 0 to over 3.5 x 10 g of soil for the different legumes used. At each site, no less than four but as many as seven legume species were planted from among the following: soybean (Glycine max), lima bean (Phaseolus lunatus), cowpea (Vigna unguiculata), bush bean (Phaseolus vulgaris), peanut (Arachis hypogaea), Leucaena leucocephala, tinga pea (Lathyrus tingeatus), alfalfa (Medicago sativa), and clover (Trifolium repens). Each legume was (i) inoculated with an equal mixture of three effective strains of homologous rhizobia, (ii) fertilized at high rates with urea, or (iii) left uninoculated. For soybeans, a nonnodulating isoline was used in all trials as the rhizobia-negative control. Inoculation increased economic yield for 22 of the 29 (76%) legume species-site combinations. While the yield increase was greater than 100 kg ha in all cases, in only 11 (38%) of the species-site combinations was the increase statistically significant (P

7.
Appl Environ Microbiol ; 57(1): 29-37, 1991 Jan.
Article in English | MEDLINE | ID: mdl-16348397

ABSTRACT

The ability to predict the symbiotic performance of rhizobia introduced into different environments would allow for a more judicious use of rhizobial inoculants. Data from eight standardized field inoculation trials were used to develop models that could be used to predict the success of rhizobial inoculation in diverse environments based on indices of the size of indigenous rhizobial populations and the availability of mineral N. Inoculation trials were conducted at five diverse sites on the island of Maui, Hawaii, with two to four legumes from among nine species, yielding 29 legume-site observations. The sizes of indigenous rhizobial populations were determined at planting. Soil N mineralization potential, total soil N, N accumulation and seed yield of nonnodulating soybean, and N derived from N(2) fixation in inoculated soybean served as indices of available soil N. Uninoculated, inoculated, and fertilizer N treatments evaluated the impact of indigenous rhizobial populations and soil N availability on inoculation response and crop yield potential. The ability of several mathematical models to describe the inverse relationship between numbers of indigenous rhizobia and legume inoculation responses was evaluated. Power, exponential, and hyperbolic functions yielded similar results; however, the hyperbolic equation provided the best fit of observed to estimated inoculation responses (r = 0.59). The fact that 59% of the observed variation in inoculation responses could be accounted for by the relationship of inoculation responses to numbers of indigenous rhizobia illustrates the profound influence that the size of soil rhizobial populations has on the successful use of rhizobial inoculants. In the absence of indigenous rhizobia, the inoculation response was directly proportional to the availability of mineral N. Therefore, the hyperbolic response function was subsequently combined with several indices of soil N availability to generate models for predicting legume inoculation response. Among the models developed, those using either soil N mineralization potential or N derived from N(2) fixation in soybean to express the availability of mineral N were most useful in predicting the success of legume inoculation. Correlation coefficients between observed and estimated inoculation responses were r = 0.83 for the model incorporating soil N mineralization potential and r = 0.96 for the model incorporating N derived from N(2) fixation. Several equations collectively termed "soil N deficit factors" were also found to be useful in estimating inoculation responses. In general, models using postharvest indices of soil N were better estimators of observed inoculation responses than were those using laboratory measures of soil N availability. However, the latter, while providing less precise estimates, are more versatile because all input variables can be obtained through soil analysis prior to planting. These models should provide researchers, as well as regional planners, with a more precise predictive capability to determine the inoculation requirements of legumes grown in diverse environments.

8.
Appl Environ Microbiol ; 56(11): 3298-303, 1990 Nov.
Article in English | MEDLINE | ID: mdl-16348337

ABSTRACT

The nitrogen-fixing effectiveness of multistrain inoculants was found to be determined by both the effectiveness of the component strains and the percentage of the nodules occupied by them. Multistrain formulations were always either as good as the most effective single-strain inoculant or intermediate between the most and the least effective. The percentage of nodules occupied and the amount of nitrogen fixed by the component strains of a multistrain inoculant showed highly significant linear correlation. The availability of soil N had a significant influence on the nitrogen fixation potential of each strain. The mineral N status of the soil was clearly a significant factor in affecting the competition pattern of Rhizobium loti (chick-pea) and Bradyrhizobium japonicum strains. Differences between the effectiveness of strains were masked under conditions of soil N availability. However, when soil N was immobilized with sugarcane bagasse, the differences became significant. In the chick-pea system, R. loti TAL 1148 (Nit 27A8) was the most effective but not the most competitive of the three strains used. In the soybean and dry bean systems, B. japonicum TAL 102 (USDA 110) and R. leguminosarum bv. phaseoli TAL 182, respectively, were consistently the most effective and, more often than not, the most competitive of the strains used for each species.

9.
Plant Physiol ; 90(4): 1347-52, 1989 Aug.
Article in English | MEDLINE | ID: mdl-16666934

ABSTRACT

Wild-type soybean (Glycine max [L] Merr. cv Bragg) and a nitrate-tolerant supernodulating mutant (nts382) were grown in split root systems to investigate the involvement of the autoregulation response and the effect of timing of inoculation on nodule suppression. In Bragg, nodulation of the root portion receiving the delayed inoculation was suppressed nearly 100% by a 7-day prior inoculation of the other root portion with Bradyrhizobium japonicum strain USDA 110. Significant suppression was also observed after a 24-hour delay in inoculation. Mutant nts382 in the presence of a low nitrate level (0.5 millimolar) showed little, if any, systemic suppression. Root fresh weights of individual root portions were similar for both wild type and nts382 mutant. When nts382 was grown in the absence of nitrate, a 7-day delay in inoculation resulted in only 30% suppression of nodulation and a significant difference in root fresh weight between the two sides, with the delayed inoculated side always being smaller. Nodulation tests on split roots of nts382, nts1116, and wild-type cultivars Bragg, Williams 82, and Clark demonstrated a difference in their systemic suppression ability. These observations indicate that (a) autoregulation deficiencies in mutant nts382 result in a reduction of systemic suppression of nodulation, (b) some suppression is detectable after 24 hours with a delayed inoculation, (c) the presence of low nitrate affects the degree of suppression and the root growth, and (d) soybean genotypes differ in their ability to express this systemic suppression.

10.
Appl Environ Microbiol ; 54(6): 1494-7, 1988 Jun.
Article in English | MEDLINE | ID: mdl-16347661

ABSTRACT

We used six rhizobium-legume systems to test the reliability of the most-probable-number (MPN) technique for enumerating rhizobia introduced into 14 sites representing four soil orders. The range-of-transition values (the number of dilution steps between the first not-entirely-positive and the last not-entirely-negative growth units) were compared for each species and for each soil. The probability that the observed data were significantly different from theoretical values varied with the species. The acceptability of MPN codes (P > 0.99) was the highest (97 to 99%) with Vicia sativa, Trifolium repens, and Glycine max and lowest (72%) with Leucaena leucocephala. Medicago sativa and Macroptilium atropurpureum yielded 87 and 75% acceptable MPN codes, respectively. The acceptability of the MPN data obtained for a host species was related to rooting habit and time to nodulation. Comparison of data for each soil indicated that, despite large differences in characteristics, the soil was not a major source of variability in the MPN counts. There was no significant interaction of the range of transition of rhizobium-legume plant infection count data between species and site.

11.
Appl Environ Microbiol ; 54(5): 1112-6, 1988 May.
Article in English | MEDLINE | ID: mdl-16347624

ABSTRACT

The relationship between environment and abundance of rhizobia was described by determining the populations of root nodule bacteria at 14 diverse sites on the island of Maui. Mean annual rainfall at the sites ranged from 320 to 1,875 mm, elevation from 37 to 1,650 m, and soil pH from 4.6 to 7.9. Four different soil orders were represented in this study: inceptisols, mollisols, ultisols, and an oxisol. The rhizobial populations were determined by plant infection counts of five legumes (Trifolium repens, Medicago sativa, Vicia sativa, Leucaena leucocephala, and Macroptilium atropurpureum). Populations varied from 1.1 to 4.8 log(10) cells per g of soil. The most frequently occurring rhizobia were Bradyrhizobium spp., which were present at 13 of 14 sites with a maximum of 4.8 log(10) cells per g of soil. Rhizobium trifolii and R. leguminosarum occurred only at higher elevations. The presence of a particular Rhizobium or Bradyrhizobium sp. was correlated with the occurrence of its appropriate host legume. Total rhizobial populations were significantly correlated with mean annual rainfall, legume cover and shoot biomass, soil temperature, soil pH, and phosphorus retention. Regression models are presented which describe the relationship of legume hosts, soil climate, and soil fertility on native rhizobial populations.

12.
Appl Environ Microbiol ; 53(8): 1785-9, 1987 Aug.
Article in English | MEDLINE | ID: mdl-16347404

ABSTRACT

Several isolates of Rhizobium fredii were examined for their serological relatedness to each other, to Bradyrhizobium japonicum, and to other fast- and slow-growing rhizobia. Immunofluorescence, agglutination, and immunodiffusion analyses indicated that R. fredii contains at least three separate somatic serogroups, USDA 192, USDA 194, and USDA 205. There was no cross-reaction between any of the R. fredii isolates and 13 of the 14 B. japonicum somatic serogroups tested. Cross-reactions were obtained with antisera from R. fredii and serogroup 122 of B. japonicum, Rhizobium meliloti, and several fast-growing Rhizobium spp. for Leucaena, Sesbania, and Lablab species. The serological relationship between R. fredii and R. meliloti was examined in more detail, and of 23 R. meliloti strains examined, 8 shared somatic antigens with the type strains from all three R. fredii serogroups. The serological relatedness of R. fredii to B. japonicum and R. meliloti appears to be unique since the strains are known to be biochemically and genetically diverse.

13.
Appl Environ Microbiol ; 53(5): 1113-7, 1987 May.
Article in English | MEDLINE | ID: mdl-16347338

ABSTRACT

The effects of temperature and soil type on interstrain competition of Bradyrhizobium japonicum and on nodulation and nitrogen accumulation in five soybean varieties belonging to four maturity groups were investigated at three sites devoid of soybean rhizobia along an elevational transect in Hawaii. Competition patterns of the three B. japonicum strains were unaffected by soil type or soil temperature. Strain USDA 110 was the best competitor, occupying on the average 81 and 64% of the nodules in the field and greenhouse experiments, respectively. Strain USDA 138 was the least successful in the field (4%), although it formed 34% of the nodules in the greenhouse. Nodule occupancy by B. japonicum strains was found to be related to soybean maturity group. Strain USDA 110 formed 61, 71, 88, 88, and 98% of the nodules in the field on Clay (00), Clark (IV), D68-0099 (VI), N77-4262 (VI), and Hardee (VIII), respectively. Strain USDA 136b formed few nodules on Hardee, an Rj2 soybean variety incompatible with that strain, in both experiments. Nodule number and weight at the 1,050-m site were reduced to 41 and 27%, respectively, of those at the 320-m site because of the decrease in temperature. Nodule number increased with increasing maturity group number at each site; however, there was not a corresponding increase in nodule weight. Nitrogen accumulation decreased from 246 mg of N per plant at the lowest elevation site to 26 mg of N per plant at the highest elevation. While soil type and temperature had no effect on strain competition, temperature had a profound influence on nodule parameters and plant growth.

14.
Appl Environ Microbiol ; 52(4): 951-3, 1986 Oct.
Article in English | MEDLINE | ID: mdl-16347190

ABSTRACT

Free-living soybean rhizobia and Bradyrhizobium spp. (lupine) have the ability to catabolize ethanol. Of the 30 strains of rhizobia examined, only the fast- and slow-growing soybean rhizobia and the slow-growing Bradyrhizobium sp. (lupine) were capable of using ethanol as a sole source of carbon and energy for growth. Two strains from each of the other Rhizobium species examined (R. meliloti, R. loti, and R. leguminosarum biovars phaseoli, trifolii, and viceae) failed to grow on ethanol. One Rhizobium fredii (fast-growing) strain, USDA 191, and one (slow-growing) Bradyrhizobium japonicum strain, USDA 110, grew in ethanol up to concentrations of 3.0 and 1.0%, respectively. While three of the R. fredii strains examined (USDA 192, USDA 194, and USDA 205) utilized 0.2% acetate, only USDA 192 utilized 0.1% n-propanol. None of the three strains utilized 0.1% methanol, formate, or n-butanol as the sole carbon source.

15.
Appl Environ Microbiol ; 50(5): 1171-6, 1985 Nov.
Article in English | MEDLINE | ID: mdl-16346926

ABSTRACT

Soybean rhizobia were isolated from two soils with different cropping histories from Hubei province in central China. The first, from Honghu county, has been under soybean cultivation for decades. All of the isolates obtained from nodules on soybeans growing in this soil were fast-growing, acid-producing rhizobia. However, slow-growing, alkali-producing isolates were obtained at higher dilutions of the same soil. The second soil, from Wuchang county, has been under rice cultivation with no record of previous soybean cultivation. All of the soybean rhizobia recovered from this soil, and at higher dilutions of the soil, were typical slow-growing, alkali-producing isolates. The isolates from both soils were grouped by using intrinsic antibiotic resistance, gel immunodiffusion, and fluorescent-antibody procedures. Representative isolates were tested for symbiotic effectiveness with four soybean cultivars (Peking, Davis, Williams, and Ai Jiao Zao) in a pot experiment. There were significant cultivar-rhizobial interactions. Moreover, on each cultivar, there was at least one fast-growing isolate among these new rhizobia that was as effective as the highly effective slow-growing reference strain USDA 110.

16.
Appl Environ Microbiol ; 49(5): 1128-33, 1985 May.
Article in English | MEDLINE | ID: mdl-16346786

ABSTRACT

The effect of several biotic and abiotic factors on the pattern of competition between two strains of Rhizobium japonicum was examined. In two Minnesota soils, Waseca and Waukegan, strain USDA 123 occupied 69% (Waseca) and 24% (Waukegan) of the root nodules on Glycine max L. Merrill cv. Chippewa. USDA 110 occupied 2% of the root nodules in the Waseca soil and 12% of the nodules in the Waukegan soil. Under a variety of other growth conditions-vermiculite, vermiculite amended with Waseca soil, and two Hawaiian soils devoid of naturalized Rhizobium japonicum strains-USDA 110 was more competitive than USDA 123. The addition of nitrate to or the presence of antibiotic-producing actinomycetes in the rhizosphere of soybeans did not affect the pattern of competition between the two strains. However, preexposure of young seedings to USDA 110 or USDA 123 before transplantation into soil altered the pattern of competition between the two strains significantly. In the Waseca soil, preexposure of cv. Chippewa to USDA 110 for 72 h increased the percentage of nodules occupied by USDA 110 from 2 to 55%. Similarly, in the Hawaiian soil Waimea, nodule occupancy by USDA 123 increased from 7 to 33% after a 72-h preexposure.

17.
Appl Environ Microbiol ; 48(1): 5-9, 1984 Jul.
Article in English | MEDLINE | ID: mdl-16346600

ABSTRACT

The successful nodulation of legumes by a Rhizobium strain is determined by the competitive ability of that strain against the mixture of other native and inoculant rhizobia. Competition among six Leucaena rhizobial strains in single and multistrain inoculants were studied. Field inoculation trials were conducted in an oxisol and a mollisol soil, both of which contained indigenous Leucaena-nodulating rhizobia. Strain-specific fluorescent antibodies were used for the identification of the strains in Leucaena nodules. Mixtures of three recommended inoculum strains for Leucaena spp. (TAL82, TAL582, and TAL1145) were used in peat-based inocula either alone or with one of the three other strains isolated from the sites, B213, B214, and B215. Each of these latter three strains was also used as single-strain inocula to study their competition with the native rhizobia in the two soil systems. In the oxisol soil, strains B213 and B215, when used as single-strain inocula, outcompeted the native rhizobia and formed 92 and 62% of the nodules, respectively. Strain B214 was the least competitive in oxisol soil, where it formed 30% of the nodules, and the best in mollisol soil, where it formed 70% of the nodules. The most successful competitor for nodulation in multistrain inocula was strain TAL1145, which outcompeted native and other inoculum Leucaena rhizobia in both soils. None of the strains in single or multistrain inoculants was capable of completely overcoming the resident rhizobia, which formed 4 to 70% of the total nodules in oxisol soil and 12 to 72% in mollisol soil. No strong relationship was detected between the size of the rhizosphere population of a strain and its successful occupation of nodules.

18.
Plant Physiol ; 75(1): 125-30, 1984 May.
Article in English | MEDLINE | ID: mdl-16663555

ABSTRACT

In a split-root system of soybeans (Glycine max L. Merr), inoculation of one half-side suppressed subsequent development of nodules on the opposite side. At zero time, the first side of the split-root system of soybeans received Rhizobium japonicum strain USDA 138 as the primary inoculum. At selected time intervals, the second side was inoculated with the secondary inoculum, a mixture of R. japonicum strain USDA 138 and strain USDA 110. In a short-day season, nodulation by the secondary inoculum was inhibited 100% when inoculation was delayed 10 days. Nodulation on the second side was significantly suppressed when the secondary inoculum was delayed for only 96 hours. In a long-day season, nodule suppression on the second side was highly significant, but not always 100%. Nodule suppression on the second side was not related to the appearance of nodules or nitrogenase activity on the side of split-roots which were inoculated at zero time. When the experiments were done under different light intensities, nodule suppression was significantly more pronounced in the shaded treatments.

19.
Plant Physiol ; 74(1): 72-6, 1984 Jan.
Article in English | MEDLINE | ID: mdl-16663389

ABSTRACT

A split-root growth system was employed to evaluate the effect of NaCl on nodule formation by soybean (Glycine max L. Merr. cv Davis). By applying the salinity stress and rhizobial inoculum to only one-half the root system, the effects of salinity on shoot growth were eliminated in the nodulation process. Rhizobium colonization of inoculated root surfaces was not affected by the salt treatments (0.0, 26.6, 53.2, and 79.9 millimolar NaCl). While shoot dry weight remained unaffected by the treatments, total shoot N declined from 1.26 grams N per pot at 0.0 millimolar NaCl to 0.44 grams N per pot at 79.9 millimolar NaCl. The concentration of N in the shoot decreased from 3.75% N (0.0 millimolar NaCl) to 1.26% N at 79.9 millimolar NaCl. The decrease in shoot N was attributed to a sharp reduction in nodule number and dry weight. Nodule number and weight were reduced by approximately 50% at 26.6 millimolar NaCl, and by more than 90% at 53.2 and 79.9 millimolar NaCl. Nodule development, as evidenced by the average weight of a nodule, was not as greatly affected by salt as was nodule number. Total nitrogenase activity (C(2)H(2) reduction) decreased proportionally in relation to nodule number and dry weight. Specific nitrogenase activity, however, was less affected by salinity and was not depressed significantly until 79.9 millimolar NaCl. In a second experiment, isolates of Rhizobium japonicum from nodules formed at 79.9 millimolar NaCl did not increase nodulation of roots under salt stress compared to nodule isolates from normal media (0.0 millimolar NaCl). Salt was applied (53.2 millimolar NaCl) to half root systems at 0, 4, 12, and 96 hours from inoculation in a third experiment. By delaying the application of salt for 12 hours, an increase in nodule number, nodule weight, and shoot N was observed. Nodule formation in the 12- and 96-hour treatments was, however, lower than the control. The early steps in nodule initiation are, therefore, extremely sensitive to even low concentrations of NaCl. The sensitivity is not related to rhizobial survival and is probably due to the salt sensitivity of root infection sites.

20.
Appl Environ Microbiol ; 46(4): 870-3, 1983 Oct.
Article in English | MEDLINE | ID: mdl-16346400

ABSTRACT

The effects of preexposure of soybean (Glycine max L. Merrill) roots to Rhizobium japonicum strains and subsequent establishment of other strains in the nodules were investigated by using combinations of effective strains (USDA 110 and USDA 138) and effective-ineffective strains (USDA 110 and SM-5). Strain USDA 110 was a better competitor than either USDA 138 or SM-5 on cultivars Lee and Peking. However, when either of the two less-competitive strains was inoculated into 2-day-old seedlings before USDA 110 was, their nodule occupancy increased significantly on both cultivars. With USDA 138 as the primary inoculum and USDA 110 delayed for 6, 48, and 168 h, the incidence of USDA 138 nodules increased on cultivar Peking from 6% (at zero time) to 28, 70, and 82% and on cultivar Lee from 17% (at zero time) to 32, 88, and 95% for the three time delays, respectively. Preexposure of 2-week-old roots of cultivar Lee to USDA 138 had essentially the same effect: the incidence of USDA 138 nodules increased from 23% at zero time to 89 and 97% when USDA 110 was delayed for 24 and 72 h, respectively. When the ineffective strain SM-5 was used as the primary inoculum, followed by USDA 110 72 h later, the percentage of nodules containing SM-5 increased from 7 to 76%. These results indicate that the early events in the nodulation process of soybeans are perhaps the most critical for competition among R. japonicum strains.

SELECTION OF CITATIONS
SEARCH DETAIL
...