Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611046

ABSTRACT

Bariatric surgery is associated with improved outcomes for several cancers, including breast cancer (BC), although the mechanisms mediating this protection are unknown. We hypothesized that elevated bile acid pools detected after bariatric surgery may be factors that contribute to improved BC outcomes. Patients with greater expression of the bile acid receptor FXR displayed improved survival in specific aggressive BC subtypes. FXR is a nuclear hormone receptor activated by primary bile acids. Therefore, we posited that activating FXR using an established FDA-approved agonist would induce anticancer effects. Using in vivo and in vitro approaches, we determined the anti-tumor potential of bile acid receptor agonism. Indeed, FXR agonism by the bile acid mimetic known commercially as Ocaliva ("OCA"), or Obeticholic acid (INT-747), significantly reduced BC progression and overall tumor burden in a pre-clinical model. The transcriptomic analysis of tumors in mice subjected to OCA treatment revealed differential gene expression patterns compared to vehicle controls. Notably, there was a significant down-regulation of the oncogenic transcription factor MAX (MYC-associated factor X), which interacts with the oncogene MYC. Gene set enrichment analysis (GSEA) further demonstrated a statistically significant downregulation of the Hallmark MYC-related gene set (MYC Target V1) following OCA treatment. In human and murine BC analyses in vitro, agonism of FXR significantly and dose-dependently inhibited proliferation, migration, and viability. In contrast, the synthetic agonism of another common bile acid receptor, the G protein-coupled bile acid receptor TGR5 (GPBAR1) which is mainly activated by secondary bile acids, failed to significantly alter cancer cell dynamics. In conclusion, agonism of FXR by primary bile acid memetic OCA yields potent anti-tumor effects potentially through inhibition of proliferation and migration and reduced cell viability. These findings suggest that FXR is a tumor suppressor gene with a high potential for use in personalized therapeutic strategies for individuals with BC.

2.
Sci Adv ; 9(51): eadd3231, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38134280

ABSTRACT

Mononuclear phagocytes (MPs) play a crucial role in tissue homeostasis; however, MPs also contribute to tumor progression and resistance to immune checkpoint blockade (ICB). Targeting MPs could be an effective strategy to enhance ICB efficacy. We report that protein kinase C delta (PKCδ), a serine/threonine kinase, is abundantly expressed by MPs in human and mouse tumors. PKCδ-/- mice displayed reduced tumor progression compared to wild types, with increased response to anti-PD-1. Tumors from PKCδ-/- mice demonstrated TH1-skewed immune response including increased antigen presentation and T cell activation. Depletion of MPs in vivo altered tumor growth in control but not PKCδ-/- mice. Coinjection of PKCδ-/- M2-like macrophages with cancer cells into wild-type mice markedly delayed tumor growth and significantly increased intratumoral T cell activation compared to PKCδ+/+ controls. PKCδ deficiency reprogrammed MPs by activating type I and type II interferon signaling. Thus, PKCδ might be targeted to reprogram MPs to augment ICB efficacy.


Subject(s)
Neoplasms , Protein Kinase C-delta , Mice , Humans , Animals , Protein Kinase C-delta/genetics , Protein Kinase C-delta/metabolism , Signal Transduction , Neoplasms/therapy , Immunotherapy , Phagocytes
3.
Development ; 149(20)2022 10 15.
Article in English | MEDLINE | ID: mdl-36278875

ABSTRACT

Many esophageal diseases can arise during development or throughout life. Therefore, well-characterized in vitro models and detailed methods are essential for studying human esophageal development, homeostasis and disease. Here, we (1) create an atlas of the cell types observed in the normal adult human esophagus; (2) establish an ancestrally diverse biobank of in vitro esophagus tissue to interrogate homeostasis and injury; and (3) benchmark in vitro models using the adult human esophagus atlas. We created a single-cell RNA sequencing reference atlas using fresh adult esophagus biopsies and a continuously expanding biobank of patient-derived in vitro cultures (n=55 lines). We identify and validate several transcriptionally distinct cell classes in the native human adult esophagus, with four populations belonging to the epithelial layer, including basal, epibasal, early differentiating and terminally differentiated luminal cells. Benchmarking in vitro esophagus cultures to the in vivo reference using single-cell RNA sequencing shows that the basal stem cells are robustly maintained in vitro, and the diversity of epithelial cell types in culture is dependent on cell density. We also demonstrate that cultures can be grown in 2D or as 3D organoids, and these methods can be employed for modeling the complete epithelial layers, thereby enabling in vitro modeling of the human adult esophagus.


Subject(s)
Esophagus , Organoids , Adult , Humans , Stem Cells , Epithelial Cells/metabolism , Cell Differentiation
4.
Cancer Metastasis Rev ; 41(3): 673-695, 2022 09.
Article in English | MEDLINE | ID: mdl-35870055

ABSTRACT

Obesity is a complex metabolic condition considered a worldwide public health crisis, and a deeper mechanistic understanding of obesity-associated diseases is urgently needed. Obesity comorbidities include many associated cancers and are estimated to account for 20% of female cancer deaths in the USA. Breast cancer, in particular, is associated with obesity and is the focus of this review. The exact causal links between obesity and breast cancer remain unclear. Still, interactions have emerged between body mass index, tumor molecular subtype, genetic background, and environmental factors that strongly suggest obesity influences the risk and progression of certain breast cancers. Supportive preclinical research uses various diet-induced obesity models to demonstrate that weight loss, via dietary interventions or changes in energy expenditure, reduces the onset or progression of breast cancers. Ongoing and future studies are now aimed at elucidating the underpinning mechanisms behind weight-loss-driven observations to improve therapy and outcomes in patients with breast cancer and reduce risk. This review aims to summarize the rapidly emerging literature on obesity and weight loss strategies with a focused discussion of bariatric surgery in both clinical and preclinical studies detailing the complex interactions between metabolism, immune response, and immunotherapy in the setting of obesity and breast cancer.


Subject(s)
Bariatric Surgery , Breast Neoplasms , Bariatric Surgery/adverse effects , Breast Neoplasms/etiology , Energy Metabolism , Female , Humans , Obesity/complications , Obesity/surgery , Weight Loss
5.
Elife ; 112022 07 01.
Article in English | MEDLINE | ID: mdl-35775614

ABSTRACT

Bariatric surgery is a sustainable weight loss approach, including vertical sleeve gastrectomy (VSG). Obesity exacerbates tumor growth, while diet-induced weight loss impairs progression. It remains unknown how bariatric surgery-induced weight loss impacts cancer progression or alters response to therapy. Using a pre-clinical model of obesity followed by VSG or diet-induced weight loss, breast cancer progression and immune checkpoint blockade therapy were investigated. Weight loss by VSG or weight-matched dietary intervention before tumor engraftment protected against obesity-exacerbated tumor progression. However, VSG was not as effective as diet in reducing tumor burden despite achieving similar weight and adiposity loss. Leptin did not associate with changes in tumor burden; however, circulating IL-6 was elevated in VSG mice. Uniquely, VSG tumors displayed elevated inflammation and immune checkpoint ligand PD-L1+ myeloid and non-immune cells. VSG tumors also had reduced T lymphocytes and markers of cytolysis, suggesting an ineffective anti-tumor microenvironment which prompted investigation of immune checkpoint blockade. While obese mice were resistant to immune checkpoint blockade, anti-PD-L1 potently impaired tumor progression after VSG through improved anti-tumor immunity. Thus, in formerly obese mice, surgical weight loss followed by immunotherapy reduced breast cancer burden. Finally, we compared transcriptomic changes in adipose tissue after bariatric surgery from patients and mouse models. A conserved bariatric surgery-associated weight loss signature (BSAS) was identified which significantly associated with decreased tumor volume. Findings demonstrate conserved impacts of obesity and bariatric surgery-induced weight loss pathways associated with breast cancer progression.


As the number of people classified as obese rises globally, so do obesity-related health risks. Studies show that people diagnosed with obesity have inflammation that contributes to tumor growth and their immune system is worse at detecting cancer cells. But weight loss is not currently used as a strategy for preventing or treating cancer. Surgical procedures for weight loss, also known as 'bariatric surgeries', are becoming increasingly popular. Recent studies have shown that individuals who lose weight after these treatments have a reduced risk of developing tumors. But how bariatric surgery directly impacts cancer progression has not been well studied: does it slow tumor growth or boost the anti-tumor immune response? To answer these questions, Sipe et al. compared breast tumor growth in groups of laboratory mice that were obese due to being fed a high fat diet. The first group of mice lost weight after undergoing a bariatric surgery in which part of their stomach was removed. The second lost the same amount of weight but after receiving a restricted diet, and the third underwent a fake surgery and did not lose any weight. The experiments found that surgical weight loss cuts breast cancer tumor growth in half compared with obese mice. But mice who lost the same amount of weight through dietary restrictions had even less tumor growth than surgically treated mice. The surgically treated mice who lost weight had more inflammation than mice in the two other groups, and had increased amounts of proteins and cells that block the immune response to tumors. Giving the surgically treated mice a drug that enhances the immune system's ability to detect and destroy cancer cells reduced inflammation and helped shrink the mice's tumors. Finally, Sipe et al. identified 54 genes which were turned on or off after bariatric surgery in both mice and humans, 11 of which were linked with tumor size. These findings provide crucial new information about how bariatric surgery can impact cancer progression. Future studies could potentially use the conserved genes identified by Sipe et al. to develop new ways to stimulate the anti-cancer benefits of weight loss without surgery.


Subject(s)
Bariatric Surgery , Neoplasms , Animals , Bariatric Surgery/adverse effects , Gastrectomy/adverse effects , Immune Checkpoint Inhibitors , Mice , Mice, Obese , Neoplasms/surgery , Obesity/metabolism , Weight Loss
6.
Cancer Lett ; 531: 98-108, 2022 04 10.
Article in English | MEDLINE | ID: mdl-35074498

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are an immature innate cell population that expands in pathological conditions such as cancer and suppresses T cells via production of immunosuppressive factors. Conversely, efficient cytotoxic T cell priming is dependent on the ability of antigen-presenting cells (APCs) to cross-present tumor antigens to CD8+ T cells, a process that requires a specific subtype of dendritic cells (DCs) called conventional DC1 (cDC1) which are often dysfunctional in cancer. One way to activate cDC1 is ligation of CD40 which is abundantly expressed by myeloid cells and its agonism leads to myeloid cell activation. Thus, targeting MDSCs while simultaneously expanding cross-presenting DCs represents a promising strategy that, when combined with agonistic CD40, may result in long-lasting protective immunity. In this study, we investigated the effect of PKC agonists PEP005 and prostratin on MDSC expansion, differentiation, and recruitment to the tumor microenvironment. Our findings demonstrate that PKC agonists decreased MDSC expansion from hematopoietic progenitors and induced M-MDSC differentiation to an APC-like phenotype that expresses cDC1-related markers via activation of the p38 mitogen-activated protein kinase (MAPK) pathway. Simultaneously, PKC agonists favored cDC1 expansion at the expense of cDC2 and plasmacytoid DCs (pDC). Functionally, PKC agonists blunted MDSC suppressive activity and enhanced MDSC cross-priming capacity both in vitro and in vivo. Finally, combination of PKC agonism with agonistic CD40 mAb resulted in a marked reduction in tumor growth with a significant increase in intratumoral activated CD8+ T cells and tissue-resident memory CD8+ T cells in a syngeneic breast cancer mouse model. In sum, this work proposes a novel promising strategy to simultaneously target MDSCs and promote APC function that may have highly impactful clinical relevance in cancer patients.


Subject(s)
Breast Neoplasms , Cross-Priming , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , CD40 Antigens/metabolism , CD8-Positive T-Lymphocytes , Dendritic Cells , Female , Humans , Immunity, Innate , Mice , Tumor Microenvironment
7.
Front Cell Dev Biol ; 8: 587107, 2020.
Article in English | MEDLINE | ID: mdl-33240885

ABSTRACT

Cell line authentication is critical for preventing the use of mixed or misidentified cell lines in research. Current efforts include short tandem repeat (STR) analysis and PCR-based assays to detect mixed species cultures. Using PCR analysis with mouse-specific primers, we identified contaminating mouse DNA in growth factor conditioned medium (CM) derived from the L-WRN cell line (L-WRN CM), as well as in human organoid cultures maintained in the L-WRN CM. DNA isolated from L-WRN CM matched the L-WRN cell signature by STR analysis. Organoid lines that were positive for murine DNA by PCR were further analyzed via bulk RNA-sequencing and transcripts were aligned to the human and mouse genomes. RNA analysis failed to detect mouse-specific gene expression above background levels, suggesting no viable murine cells were present in the organoid cultures. We interpret our data to show conclusive evidence that mouse cell-derived CM can be a source of contaminating murine DNA detected in human organoid cultures, even though live, transcriptionally-active murine cells are not present. Together, our findings suggest that multiple methods may be required to authenticate human organoid or cell lines and urges cautious interpretation of DNA-based PCR cell line authentication results.

8.
PLoS One ; 15(3): e0222058, 2020.
Article in English | MEDLINE | ID: mdl-32134920

ABSTRACT

BACKGROUND AND AIMS: Human colonoid cultures maintained under low-calcium (0.25 mM) conditions undergo differentiation spontaneously and, concomitantly, express a high level of tight junction proteins, but not desmosomal proteins. When calcium is included to a final concentration of 1.5-3.0 mM (provided either as a single agent or as a combination of calcium and additional minerals), there is little change in tight junction protein expression but a strong up-regulation of desmosomal proteins and an increase in desmosome formation. The aim of this study was to assess the functional consequences of calcium-mediated differences in barrier protein expression. METHODS: Human colonoid-derived epithelial cells were interrogated in transwell culture under low- or high-calcium conditions for monolayer integrity and ion permeability by measuring trans-epithelial electrical resistance (TEER) across the confluent monolayer. Colonoid cohesiveness was assessed in parallel. RESULTS: TEER values were high in the low-calcium environment but increased in response to calcium. In addition, colonoid cohesiveness increased substantially with calcium supplementation. In both assays, the response to multi-mineral intervention was greater than the response to calcium alone. Consistent with these findings, several components of tight junctions were expressed at 0.25 mM calcium but these did not increase substantially with supplementation. Cadherin-17 and desmoglein-2, in contrast, were weakly-expressed under low calcium conditions but increased with intervention. CONCLUSIONS: These findings indicate that low ambient calcium levels are sufficient to support the formation of a permeability barrier in the colonic epithelium. Higher calcium levels promote tissue cohesion and enhance barrier function. These findings may help explain how an adequate calcium intake contributes to colonic health by improving barrier function, even though there is little change in colonic histological features over a wide range of calcium intake levels.


Subject(s)
Calcium/pharmacology , Cell Differentiation/drug effects , Cadherins/metabolism , Cell Culture Techniques , Colon/cytology , Desmoglein 2/metabolism , Electric Impedance , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Ion Transport/drug effects , Microscopy, Confocal , Minerals/pharmacology , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism , Up-Regulation/drug effects
9.
J AOAC Int ; 100(6): 1836-1847, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28644779

ABSTRACT

Rapid identification of bacteria is critical in clinical and food safety applications. This paper describes a novel instrument and data analysis method for identifying bacteria based on the measurement of laser light scattering as the beam interacts with bacterial cells suspended in water. A description of the technology is followed by an identification performance study for a set of strains from the genus Staphylococcus (the inclusive target organisms) and a set of non-Staphylococcus strains (the exclusive organisms). Staphylococcus and non-Staphylococcus cells were grown on sheep blood agar (SBA), tryptic soy agar, brain heart infusion (BHI) agar, or Luria-Bertani (LB) agar and identified based on how cells scattered light. Bacteria from the genus Staphylococcus grown on solid media were correctly identified more than 92% of the time. To determine whether the system could also identify bacteria grown in liquid culture, six different Staphylococcus strains and six different non-Staphylococcus strains were grown in tryptic soy broth, BHI broth, or LB broth. This system accurately identified all targeted Staphylococcus samples tested, and no misidentifications occurred. A single-blind identification experiment was also performed on human clinical isolates obtained from the Upper Peninsula Health System. Ninety blind-coded clinical bacterial isolates on SBA were tested to determine whether they were from the genus Staphylococcus. All Staphylococcus were accurately identified, and no misidentifications occurred. This study demonstrated the proof of concept of a novel system that can rapidly and accurately identify bacteria from pure culture based on cellular light-scattering properties.


Subject(s)
Bacteriological Techniques/methods , Dynamic Light Scattering/instrumentation , Dynamic Light Scattering/methods , Staphylococcus/classification , Agar , Algorithms , Culture Media , Humans , Lasers , Single-Blind Method , Staphylococcal Infections/microbiology , Staphylococcus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...