Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nature ; 594(7862): 253-258, 2021 06.
Article in English | MEDLINE | ID: mdl-33873199

ABSTRACT

The development of a portfolio of COVID-19 vaccines to vaccinate the global population remains an urgent public health imperative1. Here we demonstrate the capacity of a subunit vaccine, comprising the SARS-CoV-2 spike protein receptor-binding domain displayed on an I53-50 protein nanoparticle scaffold (hereafter designated RBD-NP), to stimulate robust and durable neutralizing-antibody responses and protection against SARS-CoV-2 in rhesus macaques. We evaluated five adjuvants including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an α-tocopherol-containing oil-in-water emulsion; AS37, a Toll-like receptor 7 (TLR7) agonist adsorbed to alum; CpG1018-alum, a TLR9 agonist formulated in alum; and alum. RBD-NP immunization with AS03, CpG1018-alum, AS37 or alum induced substantial neutralizing-antibody and CD4 T cell responses, and conferred protection against SARS-CoV-2 infection in the pharynges, nares and bronchoalveolar lavage. The neutralizing-antibody response to live virus was maintained up to 180 days after vaccination with RBD-NP in AS03 (RBD-NP-AS03), and correlated with protection from infection. RBD-NP immunization cross-neutralized the B.1.1.7 SARS-CoV-2 variant efficiently but showed a reduced response against the B.1.351 variant. RBD-NP-AS03 produced a 4.5-fold reduction in neutralization of B.1.351 whereas the group immunized with RBD-NP-AS37 produced a 16-fold reduction in neutralization of B.1.351, suggesting differences in the breadth of the neutralizing-antibody response induced by these adjuvants. Furthermore, RBD-NP-AS03 was as immunogenic as a prefusion-stabilized spike immunogen (HexaPro) with AS03 adjuvant. These data highlight the efficacy of the adjuvanted RBD-NP vaccine in promoting protective immunity against SARS-CoV-2 and have led to phase I/II clinical trials of this vaccine (NCT04742738 and NCT04750343).


Subject(s)
Adjuvants, Immunologic , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Subunit/immunology , Alum Compounds , Animals , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , COVID-19/virology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Disease Models, Animal , Immunity, Cellular , Immunity, Humoral , Macaca mulatta/immunology , Male , Oligodeoxyribonucleotides , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Squalene
2.
bioRxiv ; 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33594366

ABSTRACT

The development of a portfolio of SARS-CoV-2 vaccines to vaccinate the global population remains an urgent public health imperative. Here, we demonstrate the capacity of a subunit vaccine under clinical development, comprising the SARS-CoV-2 Spike protein receptor-binding domain displayed on a two-component protein nanoparticle (RBD-NP), to stimulate robust and durable neutralizing antibody (nAb) responses and protection against SARS-CoV-2 in non-human primates. We evaluated five different adjuvants combined with RBD-NP including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an alpha-tocopherol-containing squalene-based oil-in-water emulsion used in pandemic influenza vaccines; AS37, a TLR-7 agonist adsorbed to Alum; CpG 1018-Alum (CpG-Alum), a TLR-9 agonist formulated in Alum; or Alum, the most widely used adjuvant. All five adjuvants induced substantial nAb and CD4 T cell responses after two consecutive immunizations. Durable nAb responses were evaluated for RBD-NP/AS03 immunization and the live-virus nAb response was durably maintained up to 154 days post-vaccination. AS03, CpG-Alum, AS37 and Alum groups conferred significant protection against SARS-CoV-2 infection in the pharynges, nares and in the bronchoalveolar lavage. The nAb titers were highly correlated with protection against infection. Furthermore, RBD-NP when used in conjunction with AS03 was as potent as the prefusion stabilized Spike immunogen, HexaPro. Taken together, these data highlight the efficacy of the RBD-NP formulated with clinically relevant adjuvants in promoting robust immunity against SARS-CoV-2 in non-human primates.

3.
Eur J Immunol ; 35(1): 46-55, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15593297

ABSTRACT

The goal of this study was to define, by surgical removal of the thymus in juvenile rhesus macaques, the role of the thymus in peripheral T cell homeostasis and to assess the significance of thymic output in SIV infection. By monitoring the changes in phenotypic T cell markers as well as in the numbers of TCR excisional circles--a recently described marker for recent thymic emigrants--following thymectomy, we present evidence that surgical thymectomy in juvenile macaques results in a faster decay of peripheral CD4(+) cells, but does not cause a substantial shift in CD45RA(+) and CD45RA(-) populations. We were able to measure a thymic output of 0.32% and 0.21% per day of CD4(+) and CD8(+) cells, respectively. No compensatory extra-thymic source was detected in lymphoid tissues, although there was a small compensatory increase in T cell proliferation in the peripheral T cell pool. After SIV infection, thymectomized animals did not have higher viral loads, greater T cell decay, or faster disease progression. We therefore conclude that peripheral destructive processes, rather than a loss of thymic output, appear to be the main causes of T cell depletion in SIV infection.


Subject(s)
Simian Acquired Immunodeficiency Syndrome/immunology , T-Lymphocyte Subsets/immunology , Thymus Gland/immunology , Animals , Base Sequence , DNA/genetics , DNA/metabolism , Macaca mulatta , Receptors, Antigen, T-Cell/genetics , Simian Acquired Immunodeficiency Syndrome/etiology , Simian Acquired Immunodeficiency Syndrome/genetics , Thymectomy
4.
Virology ; 320(1): 167-80, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-15003872

ABSTRACT

The potential of vaccine-elicited anti-HIV envelope antibodies to control HIV-infection was evaluated by immunizing macaques with the HIV envelope protein and transiently depleting them of their CD8+ cells before intravenous challenge with the pathogenic CCR5-tropic SIV/HIV chimeric virus, SHIV(SF162P4). Although sterilizing immunity was not achieved, all vaccinated animals effectively controlled infection and remained free of disease for the duration of observation (over 3 years). In contrast, during the same period, the control animals progressed to disease. Both the vaccinees and the controls developed robust cell-mediated antiviral and neutralizing antibody responses following infection. A comparative analysis of these responses suggests that the more effective long-term control of infection by the vaccinated animals is due to the more rapid development of anti-HIV envelope antibodies. These studies suggest that priming by vaccination of B cell anti-HIV envelope responses maybe crucial for the long-term control of HIV infection.


Subject(s)
AIDS Vaccines/immunology , B-Lymphocytes/immunology , Glycoproteins/immunology , HIV-1/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus , Vaccination , Viral Envelope Proteins/immunology , AIDS Vaccines/administration & dosage , Animals , CD4-Positive T-Lymphocytes/immunology , HIV Antibodies/analysis , HIV Antibodies/blood , HIV-1/genetics , Immunity, Active , Macaca mulatta , Receptors, CCR5/metabolism , Recombination, Genetic , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/metabolism , Time Factors , Vaccines, Subunit/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...