Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 7(11): 3095-101, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25187223

ABSTRACT

2,5-Dimethylfuran (DMF), a promising cellulosic biofuel candidate from biomass derived intermediates, has received significant attention because of its low oxygen content, high energy density, and high octane value. A bimetallic catalyst combination containing a Lewis-acidic Zn(II) and Pd/C components is effective for 5-hydroxymethylfurfural (HMF) hydrodeoxygenation (HDO) to DMF with high conversion (99%) and selectivity (85% DMF). Control experiments for evaluating the roles of zinc and palladium revealed that ZnCl2 alone did not catalyze the reaction, whereas Pd/C produced 60% less DMF than the combination of both metals. The presence of Lewis acidic component (Zn) was also found to be beneficial for HMF HDO with Ru/C catalyst, but the synergistic effect between the two metal components is more pronounced for the Pd/Zn system than the Ru/Zn. A comparative analysis of the Pd/Zn/C catalyst to previously reported catalytic systems show that the Pd/Zn system containing at least four times less precious metal than the reported catalysts gives comparable or better DMF yields. The catalyst shows excellent recyclability up to 4 cycles, followed by a deactivation, which could be due to coke formation on the catalyst surface. The effectiveness of this combined bimetallic catalyst has also been tested for one-pot conversion of fructose to DMF.


Subject(s)
Carbon/chemistry , Furaldehyde/analogs & derivatives , Furans/chemistry , Palladium/chemistry , Zinc/chemistry , Biomass , Catalysis , Furaldehyde/chemistry , Recycling
2.
FEMS Microbiol Lett ; 279(2): 207-16, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18179584

ABSTRACT

PCR typing methods were used to assess the presence of plasmids of the incompatibility (Inc) groups IncP, IncN, IncW, IncQ and rolling circle plasmids of the pMV158 type in total DNA extracts from anthropogenic soils from India and Germany. Ten different soils from two different locations in Germany, the urban park Berlin Tiergarten and the abandoned sewage field Berlin-Buch, and from four different locations in India were analysed. PCR amplification of the total DNA extracts revealed the prevalence of IncP-specific sequences in Berlin Buch and Indian soil samples. The detected IncP plasmids contained at least one transfer function, the origin of transfer, oriT. In contrast to IncP-specific sequences, IncQ, IncN, IncW and pMV158-specific sequences were never detected. The presence of ampC, tet (O), ermB, SHV-5, mecA, and vanA antibiotic resistance genes was also tested. Three Indian soil samples irrigated with wastewater contained the ampC gene, whereas the other resistance genes were not found in any of the samples. Detection of IncP trfA2 and oriT sequences by PCR amplification and hybridization is a clear indication that IncP plasmids are prevalent in these habitats. Exogenous plasmid isolation revealed conjugative plasmids belonging to the IncPbeta group encoding resistance to ampicillin.


Subject(s)
DNA, Bacterial/isolation & purification , Drug Resistance, Microbial/genetics , Plasmids/isolation & purification , Soil Microbiology , Berlin , DNA, Bacterial/genetics , Genes, Bacterial , India , Nucleic Acid Hybridization , Polymerase Chain Reaction , Soil/analysis
3.
J Bacteriol ; 189(6): 2487-96, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17209024

ABSTRACT

Plasmid pIP501 has a very broad host range for conjugative transfer among a wide variety of gram-positive bacteria and gram-negative Escherichia coli. Functionality of the pIP501 transfer (tra) genes in E. coli was proven by pIP501 retrotransfer to Enterococcus faecalis (B. Kurenbach, C. Bohn, J. Prabhu, M. Abudukerim, U. Szewzyk, and E. Grohmann, Plasmid 50:86-93, 2003). The 15 pIP501 tra genes are organized in a single operon (B. Kurenbach, J. Kopec, M. Mägdefrau, K. Andreas, W. Keller, C. Bohn, M. Y. Abajy, and E. Grohmann, Microbiology 152:637-645, 2006). The pIP501 tra operon is negatively autoregulated at the transcriptional level by the conjugative DNA relaxase TraA. Three of the 15 pIP501-encoded Tra proteins show significant sequence similarity to the Agrobacterium type IV secretion system proteins VirB1, VirB4, and VirD4. Here we report a comprehensive protein-protein interaction map of all of the pIP501-encoded Tra proteins determined by the yeast two-hybrid assay. Most of the interactions were verified in vitro by isolation of the protein complexes with pull-down assays. In conjunction with known or postulated functions of the pIP501-encoded Tra proteins and computer-assisted prediction of their cellular location, we propose a model for the first type IV-secretion-like system encoded by a conjugative plasmid from gram-positive bacteria.


Subject(s)
Bacterial Proteins/genetics , Conjugation, Genetic , DNA, Bacterial/genetics , Enterococcus faecalis/genetics , Gene Expression Regulation, Bacterial , Gene Transfer, Horizontal , Plasmids/genetics , Bacterial Proteins/metabolism , DNA Nucleotidyltransferases/genetics , Open Reading Frames/genetics , Two-Hybrid System Techniques
4.
Microbiology (Reading) ; 152(Pt 3): 637-645, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16514144

ABSTRACT

The conjugative multiple antibiotic resistance plasmid pIP501 can be transferred and stably maintained in a variety of Gram-positive genera, including multicellular Streptomyces lividans, as well as in Gram-negative Escherichia coli. The 15 putative pIP501 transfer (tra) genes are organized in an operon-like structure terminating in a strong transcriptional terminator. This paper reports co-transcription of the pIP501 tra genes in exponentially growing Enterococcus faecalis JH2-2 cells, as shown by RT-PCR. The tra genes are expressed throughout the life cycle of Ent. faecalis, and the expression level is independent of the growth phase. Electrophoretic mobility shift assays indicated that the TraA relaxase, the first gene of the tra operon, binds to the tra promoter P(tra), which partially overlaps with the origin of transfer (oriT). DNase I footprinting experiments further delimited the TraA binding region and defined the nucleotides bound by TraA. Beta-Galactosidase assays with P(tra)-lacZ fusions proved P(tra) promoter activity, which was strongly repressed when TraA was supplied in trans. Thus, it is concluded that the pIP501 tra operon is negatively autoregulated at the transcriptional level by the conjugative DNA relaxase TraA.


Subject(s)
Bacterial Proteins/metabolism , DNA Nucleotidyltransferases/metabolism , Enterococcus faecalis/metabolism , Gene Expression Regulation, Bacterial , Plasmids/genetics , Streptococcus agalactiae/genetics , Bacterial Proteins/genetics , Base Sequence , Conjugation, Genetic , DNA Nucleotidyltransferases/chemistry , DNA Nucleotidyltransferases/genetics , Enterococcus faecalis/genetics , Gene Transfer, Horizontal , Molecular Sequence Data , Operon , Promoter Regions, Genetic , Transcription, Genetic
5.
Plasmid ; 50(1): 86-93, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12826062

ABSTRACT

The nucleotide sequence of the transfer (tra) region of the multiresistance broad-host-range Inc18 plasmid pIP501 was completed. The 8629-bp DNA sequence encodes 10 open reading frames (orf), 9 of them are possibly involved in pIP501 conjugative transfer. The putative pIP501 tra gene products show highest similarity to the respective ORFs of the conjugative Enterococcus faecalis plasmids pRE25 and pAMbeta1, and the Streptococcus pyogenes plasmid pSM19035, respectively. ORF7 and ORF10 encode putative homologues of type IV secretion systems involved in transport of effector molecules from pathogens to host cells and in conjugative plasmid transfer in Gram-negative (G-) bacteria. pIP501 mobilized non-selftransmissible plasmids such as pMV158 between different E. faecalis strains and from E. faecalis to Bacillus subtilis. Evidence for the very broad-host-range of pIP501 was obtained by intergeneric conjugative transfer of pIP501 to a multicellular Gram-positive (G+) bacterium, Streptomyces lividans, and to G- Escherichia coli. We proved for the first time pIP501 replication, expression of its antibiotic resistance genes as well as functionality of the pIP501 tra genes in S. lividans and E. coli.


Subject(s)
Conjugation, Genetic/genetics , Plasmids/genetics , Base Sequence/genetics , Enterococcus faecalis/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial , Molecular Sequence Data , Open Reading Frames , Streptomyces/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...