Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 98(4): 469-74, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18944197

ABSTRACT

The objectives of this research were to identify quantitative trait loci (QTL) for Stewart's wilt resistance from a mapping population derived from a sweet corn hybrid that is highly resistant to Pantoea stewartii and to determine if marker-based selection for those QTL could substantially improve Stewart's wilt resistance in a population derived from a cross of resistant lines and a highly susceptible sweet corn inbred. Three significant QTL for Stewart's wilt resistance on chromosomes 2 (bin 2.03), 5 (bin 5.03), and 6 (bin 6.06/6.07) explained 31% of the genetic variance in a population of 110 F(3:4) families derived from the sweet corn hybrid Bonus. The three QTL appeared to be additive in their effects on Stewart's wilt ratings. Based on means of families that were either homozygous or heterozygous for marker alleles associated with the resistance QTL, the QTL on chromosomes 2 and 6 appeared to have dominant or partially dominant gene action, while the QTL on chromosome 5 appeared to be recessive. A population of 422 BC(2)S(2) families was derived from crosses of a sweet corn inbred highly susceptible to Stewart's wilt, Green Giant Code 88 (GG88), and plants from two F(3:4) families (12465 and 12467) from the Bonus mapping population that were homozygous for marker alleles associated with Stewart's wilt resistance at the three QTL. Mean Stewart's wilt ratings for BC(2)S(2) families were significantly (P < 0.05) lower for families that were homozygous for the bnlg1902 marker allele (bin 5.03) from resistant lines 12465 or 12467 than for families that were heterozygous at this marker locus or homozygous for the bnlg1902 marker allele from GG88. Resistance associated with this QTL was expressed only if F(3:5) or BC(2)S(2) families were homozygous for marker alleles associated with the resistant inbred parent (P(1)). Marker alleles identified in the F(3:5) mapping population that were in proximity to the resistance QTL on chromosomes 2 and 6 were not polymorphic in crosses of GG88 with 12465 and 12467. Selection for other polymorphic marker loci adjacent to these two regions did not improve Stewart's wilt resistance of BC(2)S(2) families.


Subject(s)
Plant Diseases/genetics , Plant Diseases/microbiology , Quantitative Trait Loci/genetics , Selection, Genetic , Zea mays/genetics , Zea mays/microbiology , Genetic Predisposition to Disease , Inbreeding
2.
Theor Appl Genet ; 113(8): 1395-407, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17061102

ABSTRACT

Maize tassel inflorescence architecture is relevant to efficient production of F(1) seed and yield performance of F(1) hybrids. The objectives of this study were to identify genetic relationships among seven measured tassel inflorescence architecture traits and six calculated traits in a maize backcross population derived from two lines with differing tassel architectures, and identify Quantitative Trait Loci (QTL) involved in the inheritance of those tassel inflorescence architecture traits. A Principal Component (PC) analysis was performed to examine relationships among correlated traits. Traits with high loadings for PC1 were branch number and branch number density, for PC2 were spikelet density on central spike and primary branch, and for PC3 were lengths of tassel and central spike. We detected 45 QTL for individual architecture traits and eight QTL for the three PCs. For control of inflorescence architecture, important QTL were found in bins 7.02 and 9.02. The interval phi034-ramosa1 (ral) in bin 7.02 was associated with six individual architecture trait QTL and explained the largest amount of phenotypic variation (17.3%) for PC1. Interval bnlg344-phi027 in bin 9.02 explained the largest amount of phenotypic variation (14.6%) for PC2. Inflorescence architecture QTL were detected in regions with candidate genes fasciated ear2, thick tassel dwarf1, and ral. However, the vast majority of QTL mapped to regions without known candidate genes, indicating positional cloning efforts will be necessary to identify these genes.


Subject(s)
Genes, Plant , Quantitative Trait Loci , Quantitative Trait, Heritable , Zea mays/anatomy & histology , Zea mays/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Phenotype
3.
Theor Appl Genet ; 112(4): 592-606, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16395569

ABSTRACT

Maize (Zea mays L.) ear inflorescence architecture is directly relevant to grain yield components, and tassel architecture is relevant to hybrid seed production. The objectives of this study were to (1) determine heritabilities and correlations of a comprehensive set of tassel and ear inflorescence architecture traits in a set of (Illinois Low ProteinxB73) B73 S1 families, (2) identify chromosomal positions of QTL affecting tassel and ear architecture, and (3) identify possible candidate genes associated with these QTL. For tassel traits, the number of detected QTL ranged from one to five, and explained between 6.5 and 35.9% of phenotypic variation. For ear traits, the number of detected QTL ranged from one to nine and phenotypic variation explained by those QTL varied between 7.9 and 53.0%. We detected QTL for tassel architecture traits that required calculation of ratios from measured traits. Some of these calculated traits QTL were detected in regions that did not show QTL for the measured traits, suggesting that calculation of ratios may reveal developmentally relevant patterns of tassel architecture. We detected a QTL on chromosome 7 for tassel branch number near the gene ramosa1 (ra1), which is known to control tassel branch number, making ra1 a candidate gene for tassel branch number. We detected QTL for several traits on chromosomes 6, 8, and 9, where no inflorescence architecture genes have been mapped, thus providing initial information towards new gene discovery for control of inflorescence architecture.


Subject(s)
Flowers/genetics , Plant Stems/genetics , Quantitative Trait Loci , Zea mays/genetics , Chromosome Mapping , DNA, Plant/genetics , Flowers/growth & development , Genetic Linkage , Phenotype , Plant Stems/growth & development , Zea mays/chemistry , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...