Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 6(1): e14428, 2011 Jan 04.
Article in English | MEDLINE | ID: mdl-21245914

ABSTRACT

One striking feature of chromatin organization is that chromosomes are compartmentalized into distinct territories during interphase, the degree of intermingling being much smaller than expected for linear chains. A growing body of evidence indicates that the formation of loops plays a dominant role in transcriptional regulation as well as the entropic organization of interphase chromosomes. Using a recently proposed model, we quantitatively determine the entropic forces between chromosomes. This Dynamic Loop Model assumes that loops form solely on the basis of diffusional motion without invoking other long-range interactions. We find that introducing loops into the structure of chromatin results in a multi-fold higher repulsion between chromosomes compared to linear chains. Strong effects are observed for the tendency of a non-random alignment; the overlap volume between chromosomes decays fast with increasing loop number. Our results suggest that the formation of chromatin loops imposes both compartmentalization as well as order on the system without requiring additional energy-consuming processes.


Subject(s)
Cell Compartmentation , Chromatin/chemistry , Chromosomes/chemistry , Entropy , Computer Simulation , Interphase , Models, Molecular , Thermodynamics , Transcription, Genetic
2.
Biophys J ; 99(5): 1358-67, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20816047

ABSTRACT

A combined approach of 2D high-resolution localization light microscopy and statistical methods is presented to infer structural features and density fluctuations at the nuclear nanoscale. Hallmarks of nuclear nanostructure are found on the scale below 100 nm for both human fibroblast and HeLa cells. Mechanical measures were extracted as a quantitative tool from the histone density fluctuations inside the cell to obtain structural fluctuations on the scale of several micrometers. Results show that different mechanisms of expression of the same nuclear protein type lead to significantly different patterns on the nanoscale and to pronounced differences in the detected compressibility of chromatin. The observed fluctuations, including the experimental evidence for dynamic looping, are consistent with a recently proposed chromatin model.


Subject(s)
Chromatin/chemistry , Chromatin/metabolism , Gene Expression Regulation , Microscopy/methods , Cell Nucleus/metabolism , Fluorescent Dyes/metabolism , HeLa Cells , Histones/chemistry , Histones/metabolism , Humans , Image Processing, Computer-Assisted , Light , Microscopy/statistics & numerical data , Nanostructures , Protein Transport
3.
PLoS One ; 5(8): e12218, 2010 Aug 25.
Article in English | MEDLINE | ID: mdl-20811620

ABSTRACT

Chromatin folding inside the interphase nucleus of eukaryotic cells is done on multiple scales of length and time. Despite recent progress in understanding the folding motifs of chromatin, the higher-order structure still remains elusive. Various experimental studies reveal a tight connection between genome folding and function. Chromosomes fold into a confined subspace of the nucleus and form distinct territories. Chromatin looping seems to play a dominant role both in transcriptional regulation as well as in chromatin organization and has been assumed to be mediated by long-range interactions in many polymer models. However, it remains a crucial question which mechanisms are necessary to make two chromatin regions become co-located, i.e. have them in spatial proximity. We demonstrate that the formation of loops can be accomplished solely on the basis of diffusional motion. The probabilistic nature of temporary contacts mimics the effects of proteins, e.g. transcription factors, in the solvent. We establish testable quantitative predictions by deriving scale-independent measures for comparison to experimental data. In this Dynamic Loop (DL) model, the co-localization probability of distant elements is strongly increased compared to linear non-looping chains. The model correctly describes folding into a confined space as well as the experimentally observed cell-to-cell variation. Most importantly, at biological densities, model chromosomes occupy distinct territories showing less inter-chromosomal contacts than linear chains. Thus, dynamic diffusion-based looping, i.e. gene co-localization, provides a consistent framework for chromatin organization in eukaryotic interphase nuclei.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/chemistry , Chromatin/metabolism , Diffusion , Humans , Models, Molecular , Molecular Conformation , Polymers/chemistry , Polymers/metabolism
4.
J Chem Phys ; 132(4): 044904, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20113063

ABSTRACT

Chromatin looping is a major epigenetic regulatory mechanism in higher eukaryotes. Besides its role in transcriptional regulation, chromatin loops have been proposed to play a pivotal role in the segregation of entire chromosomes. The detailed topological and entropic forces between loops still remain elusive. Here, we quantitatively determine the potential of mean force between the centers of mass of two ring polymers, i.e., loops. We find that the transition from a linear to a ring polymer induces a strong increase in the entropic repulsion between these two polymers. On top, topological interactions such as the noncatenation constraint further reduce the number of accessible conformations of close-by ring polymers by about 50%, resulting in an additional effective repulsion. Furthermore, the transition from linear to ring polymers displays changes in the conformational and structural properties of the system. In fact, ring polymers adopt a markedly more ordered and aligned state than linear ones. The forces and accompanying changes in shape and alignment between ring polymers suggest an important regulatory function of such a topology in biopolymers. We conjecture that dynamic loop formation in chromatin might act as a versatile control mechanism regulating and maintaining different local states of compaction and order.


Subject(s)
Chromatin/chemistry , Polymers/chemistry , Algorithms , Molecular Conformation , Surface Properties
5.
J Chem Phys ; 130(17): 174901, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19425810

ABSTRACT

Monte Carlo simulations of coarse-grained polymers provide a useful tool to deepen the understanding of conformational and statistical properties of polymers both in physical as well as in biological systems. In this study we sample compact conformations on a cubic L x L x L lattice with different occupancy fractions by modifying a recently proposed algorithm. The system sizes studied extend up to N=256,000 monomers, going well beyond the limits of older publications on compact polymers. We analyze several conformational properties of these polymers, including segment correlations and screening of excluded volume. Most importantly we propose a scaling law for the end-to-end distance distribution and analyze the moments of this distribution. It shows universality with respect to different occupancy fractions, i.e., system densities. We further analyze the distance distribution between intrachain segments, which turns out to be of great importance for biological experiments. We apply these new findings to the problem of chromatin folding inside interphase nuclei and show that--although chromatin is in a compacted state--the classical theory of compact polymers does not explain recent experimental results.

6.
Proc Natl Acad Sci U S A ; 106(10): 3812-7, 2009 Mar 10.
Article in English | MEDLINE | ID: mdl-19234129

ABSTRACT

Genome function in higher eukaryotes involves major changes in the spatial organization of the chromatin fiber. Nevertheless, our understanding of chromatin folding is remarkably limited. Polymer models have been used to describe chromatin folding. However, none of the proposed models gives a satisfactory explanation of experimental data. In particularly, they ignore that each chromosome occupies a confined space, i.e., the chromosome territory. Here, we present a polymer model that is able to describe key properties of chromatin over length scales ranging from 0.5 to 75 Mb. This random loop (RL) model assumes a self-avoiding random walk folding of the polymer backbone and defines a probability P for 2 monomers to interact, creating loops of a broad size range. Model predictions are compared with systematic measurements of chromatin folding of the q-arms of chromosomes 1 and 11. The RL model can explain our observed data and suggests that on the tens-of-megabases length scale P is small, i.e., 10-30 loops per 100 Mb. This is sufficient to enforce folding inside the confined space of a chromosome territory. On the 0.5- to 3-Mb length scale chromatin compaction differs in different subchromosomal domains. This aspect of chromatin structure is incorporated in the RL model by introducing heterogeneity along the fiber contour length due to different local looping probabilities. The RL model creates a quantitative and predictive framework for the identification of nuclear components that are responsible for chromatin-chromatin interactions and determine the 3-dimensional organization of the chromatin fiber.


Subject(s)
Chromatin/chemistry , Fibroblasts/cytology , Interphase , Nucleic Acid Conformation , Cells, Cultured , Female , Humans , Models, Molecular
7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 1): 051805, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18233679

ABSTRACT

Remarkably little is known about the higher-order folding motifs of the chromatin fiber inside the cell nucleus. Folding depends among others on local gene density and transcriptional activity and plays an important role in gene regulation. Strikingly, at fiber lengths above 5 to 10 Mb the measured mean square distance between any two points on the chromatin fiber is independent of polymer length. We propose a polymer model that can explain this leveling-off by means of random looping. We derive an analytical expression for the mean square displacement between two arbitrary beads. Here the average is taken over the thermal ensemble with a fixed but random loop configuration, while quenched averaging over the ensemble of different loop configurations--which turns out to be equivalent to averaging over an ensemble of random matrices--is performed numerically. A detailed investigation of this model shows that loops on all scales are necessary to fit experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL