Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Apher ; 39(1): e22107, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38404046

ABSTRACT

BACKGROUND: Throughout the COVID-19 pandemic, the mortality of critically ill patients remained high. Our group developed a treatment regimen targeting sepsis and ARDS which we labeled "triple therapy" consisting of (1) corticosteroids, (2) therapeutic plasma exchange (TPE), and (3) timely intubation with lung protective ventilation. Our propensity analysis assesses the impact of triple therapy on survival in COVID-19 patients with sepsis and ARDS. METHODS: Retrospective propensity analysis comparing triple therapy to no triple therapy in adult critically ill COVID-19 patients admitted to the Intensive Care Unit at Lexington Medical Center from 1 March 2020 through 31 October 2021. RESULTS: Eight hundred and fifty-one patients were admitted with COVID-19 and 53 clinical and laboratory variables were analyzed. Multivariable analysis revealed that triple therapy was associated with increased survival (OR: 1.91; P = .008). Two propensity score-adjusted models demonstrated an increased likelihood of survival in patients receiving triple therapy. Patients with thrombocytopenia were among those most likely to experience increased survival if they received early triple therapy. Decreased survival was observed with endotracheal intubation ≥7 days from hospital admission (P < .001) and there was a trend toward decreased survival if TPE was initiated ≥6 days from hospital admission (P = .091). CONCLUSION: Our analysis shows that early triple therapy, defined as high-dose methylprednisolone, TPE, and timely invasive mechanical ventilation within the first 96 hours of admission, may improve survival in critically ill septic patients with ARDS secondary to COVID-19 infection. Further studies are needed to define specific phenotypes and characteristics that will identify those patients most likely to benefit.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Sepsis , Adult , Humans , COVID-19/complications , COVID-19/therapy , Plasma Exchange/adverse effects , SARS-CoV-2 , Retrospective Studies , Critical Illness/therapy , Pandemics , Sepsis/complications , Sepsis/therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy
2.
Front Pediatr ; 11: 1035576, 2023.
Article in English | MEDLINE | ID: mdl-36793336

ABSTRACT

Sepsis contributes to 1 of every 5 deaths globally with 3 million per year occurring in children. To improve clinical outcomes in pediatric sepsis, it is critical to avoid "one-size-fits-all" approaches and to employ a precision medicine approach. To advance a precision medicine approach to pediatric sepsis treatments, this review provides a summary of two phenotyping strategies, empiric and machine-learning-based phenotyping based on multifaceted data underlying the complex pediatric sepsis pathobiology. Although empiric and machine-learning-based phenotypes help clinicians accelerate the diagnosis and treatments, neither empiric nor machine-learning-based phenotypes fully encapsulate all aspects of pediatric sepsis heterogeneity. To facilitate accurate delineations of pediatric sepsis phenotypes for precision medicine approach, methodological steps and challenges are further highlighted.

3.
Physiol Rep ; 9(14): e14937, 2021 07.
Article in English | MEDLINE | ID: mdl-34291592

ABSTRACT

Most of the obesity murine models inducing renal injury use calorie-enriched foods, where fat represents 60% of the total caloric supply, however, this strategy doubles the standard proportion of fat ingestion in obese patients. Therefore, it is crucial to study the impact of a high-fat intake on kidney physiology that resembles common obesity in humans to understand the trigger mechanisms of the long-term consequences of overweight and obesity. In this study, we analyzed whether chronic feeding with a moderately high fat diet (MHFD) representing 45% of total calories, may induce kidney function and structural injury compared to C57BL/6 mice fed a control diet. After 14 weeks, MHFD induced significant mice obesity. At the functional level, obese mice showed signs of kidney injury characterized by increased albuminuria/creatinine ratio and higher excretion of urinary biomarkers of kidney damage. While, at the structural level, glomerular hypertrophy was observed. Although, we did not detect renal fibrosis, the obese mice exhibited a significant elevation of Tgfb1 mRNA levels. Kidney damage caused by the exposure to MHFD was associated with greater oxidative stress, renal inflammation, higher endoplasmic reticulum (ER)-stress, and disruption of mitochondrial dynamics. In summary, our data demonstrate that obesity induced by a milder fat content diet is enough to establish renal injury, where oxidative stress, inflammation, ER-stress, and mitochondrial damage take relevance, pointing out the importance of opportune interventions to avoid the long-term consequences associated with obesity and metabolic syndrome.


Subject(s)
Diet, High-Fat/adverse effects , Kidney Diseases/etiology , Kidney Diseases/pathology , Oxidative Stress/physiology , Animals , Kidney Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Obesity/pathology
4.
Am J Physiol Cell Physiol ; 320(1): C106-C118, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33112643

ABSTRACT

Serpins are a superfamily of proteins characterized by their common function as serine protease inhibitors. So far, 36 serpins from nine clades have been identified. These proteins are expressed in all the organs and are involved in multiple important functions such as the regulation of blood pressure, hormone transport, insulin sensitivity, and the inflammatory response. Diseases such as obesity, diabetes, cardiovascular diseases, and kidney disorders are intensively studied to find effective therapeutic targets. Given the serpins' outstanding functionality, the deficiency or overexpression of certain types of serpin has been associated with diverse pathophysiological events. In particular, we focus here on reviewing the studies evaluating the participation of serpins, and particularly SerpinA3, in diverse diseases that occur in relevant organs such as the brain, retinas, corneas, lungs, cardiac vasculature, and kidneys. In this review, we summarize the role of serpins in physiological and pathophysiological processes as well as recent evidence on the crucial role of SerpinA3 in several pathologies. Finally, we emphasize the importance of SerpinA3 in regulating cellular processes such as angiogenesis, apoptosis, fibrosis, oxidative stress, and the inflammatory response.


Subject(s)
Chronic Disease , Health , Serpins/metabolism , Animals , Apoptosis , Fibrosis , Humans , Inflammation/metabolism , Neovascularization, Physiologic , Oxidative Stress , Signal Transduction
5.
Int J Med Microbiol ; 308(1): 228-236, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29169848

ABSTRACT

Phagocytosis is essential for uptake and elimination of pathogenic microorganisms. Autophagy is a highly conserved mechanism for incorporation of cellular constituents to replenish nutrients by degradation. Recently, parts of the autophagy machinery - above all microtubule-associated protein 1 light chain 3 (LC3) - were found to be specifically recruited to phagosomal membranes resulting in phagosome-lysosome fusion and efficient degradation of internalized cargo in a process termed LC3-associated phagocytosis (LAP). Many pathogenic bacterial, fungal and parasitic microorganisms reside within LAP-targeted single-membrane phagosomes or vacuoles after infection of host cells. In this minireview we describe the state of knowledge on the interaction of pathogens with LAP or LAP-like pathways and report on various pathogens that have evolved strategies to circumvent degradation in LAP compartments.


Subject(s)
Bacteria/pathogenicity , Fungi/pathogenicity , Microtubule-Associated Proteins/metabolism , Parasites/pathogenicity , Phagocytosis , Animals , Bacteria/immunology , Bacteria/metabolism , Fungi/immunology , Fungi/metabolism , Humans , Immune Evasion , Microtubule-Associated Proteins/immunology , Parasites/immunology , Parasites/metabolism , Phagosomes/metabolism , Phagosomes/microbiology , Phagosomes/parasitology , Vacuoles/metabolism , Vacuoles/microbiology , Vacuoles/parasitology
6.
Autophagy ; 11(2): 285-97, 2015.
Article in English | MEDLINE | ID: mdl-25801301

ABSTRACT

Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showed--in contrast to viable parasites--that apoptotic-like parasites enter an LC3(+), autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4(+) T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferation-reducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells' autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis.


Subject(s)
Apoptosis/immunology , Autophagy/immunology , Leishmania/immunology , T-Lymphocytes/immunology , Animals , Humans , Leishmaniasis/immunology , Macrophages/immunology , Phagocytes/immunology , Phagocytosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...