Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Protoc ; 3(3): e704, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36912623

ABSTRACT

Optogenetics allows precise temporal control of neuronal activity in the brain. Engineered viral vectors are routinely used to transduce neurons with light-sensitive opsins. However, reliable virus injection and light delivery in animals with large brains, such as nonhuman primates, has proven challenging. The Opto-Array is a novel yet simple device that is used to deliver light to extended regions of the cortex surface for high-throughput behavioral optogenetics in large brains. Here we present protocols for surgical delivery of virus (Basic Protocol 1) and implantation of the Opto-Array (Basic Protocol 2) in two separate surgeries in a rhesus monkey's inferior temporal cortex. As a proof of concept, we measured the behavioral performance of an animal detecting cortical optogenetic stimulations (Basic Protocol 3) with different illumination power and duration using the Opto-Array. The animal was able to detect the optogenetic stimulation for all tested illumination powers and durations. Regression analysis also showed both power and duration of illumination significantly modulate the detectability of the optogenetic stimulation. The outcome of this approach is superior to the standard practice of injecting and recording through a chamber for large areas of the cortex surface. Moreover, the chronic nature of the Opto-Array allows perturbation of neuronal activity of the same site across multiple sessions because it is highly stable; thus, data can be pooled over months. The detailed surgical method presented here makes it possible to use optogenetics to modulate neuronal activity across large regions of the cortex surface in the nonhuman primate brain. This method also lays the groundwork for future attempts to use optogenetics to restore vision in humans. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Virus injection surgery Basic Protocol 2: Opto-Array implantation surgery Basic Protocol 3: Cortical Perturbation Detection (CPD) task behavioral training.


Subject(s)
Brain , Neurons , Humans , Animals , Photic Stimulation , Neurons/physiology , Macaca mulatta , Embryo Implantation , Optogenetics/methods
2.
Curr Biol ; 33(3): 581-588.e4, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36610394

ABSTRACT

Artificial activation of neurons in early visual areas induces perception of simple visual flashes.1,2 Accordingly, stimulation in high-level visual cortices is expected to induce perception of complex features.3,4 However, results from studies in human patients challenge this expectation. Stimulation rarely induces any detectable visual event, and never a complex one, in human subjects with closed eyes.2 Stimulation of the face-selective cortex in a human patient led to remarkable hallucinations only while the subject was looking at faces.5 In contrast, stimulations of color- and face-selective sites evoke notable hallucinations independent of the object being viewed.6 These anecdotal observations suggest that stimulation of high-level visual cortex can evoke perception of complex visual features, but these effects depend on the availability and content of visual input. In this study, we introduce a novel psychophysical task to systematically investigate characteristics of the perceptual events evoked by optogenetic stimulation of macaque inferior temporal (IT) cortex. We trained macaque monkeys to detect and report optogenetic impulses delivered to their IT cortices7,8,9 while holding fixation on object images. In a series of experiments, we show that detection of cortical stimulation is highly dependent on the choice of images presented to the eyes and it is most difficult when fixating on a blank screen. These findings suggest that optogenetic stimulation of high-level visual cortex results in easily detectable distortions of the concurrent contents of vision.


Subject(s)
Optogenetics , Visual Cortex , Animals , Humans , Macaca mulatta/physiology , Temporal Lobe/physiology , Neurons/physiology , Visual Cortex/physiology , Photic Stimulation/methods
3.
Curr Res Neurobiol ; 4: 100063, 2023.
Article in English | MEDLINE | ID: mdl-36578652

ABSTRACT

We have previously demonstrated that macaque monkeys can behaviorally detect a subtle optogenetic impulse delivered to their inferior temporal (IT) cortex. We have also shown that the ability to detect the cortical stimulation impulse varies depending on some characteristics of the visual images viewed at the time of brain stimulation, revealing the visual nature of the perceptual events induced by stimulation of the IT cortex. Here we systematically studied the effect of the size of viewed objects on behavioral detectability of optogenetic stimulation of the central IT cortex. Surprisingly, we found that behavioral detection of the same optogenetic impulse highly varies with the size of the viewed object images. Reduction of the object size in four steps from 8 to 1 degree of visual angle significantly decreased detection performance. These results show that identical stimulation impulses delivered to the same neural population induce variable perceptual events depending on the mere size of the objects viewed at the time of brain stimulation.

4.
Nat Methods ; 18(9): 1112-1116, 2021 09.
Article in English | MEDLINE | ID: mdl-34462591

ABSTRACT

Optogenetic methods have been widely used in rodent brains, but remain relatively under-developed for nonhuman primates such as rhesus macaques, an animal model with a large brain expressing sophisticated sensory, motor and cognitive behaviors. To address challenges in behavioral optogenetics in large brains, we developed Opto-Array, a chronically implantable array of light-emitting diodes for high-throughput optogenetic perturbation. We demonstrated that optogenetic silencing in the macaque primary visual cortex with the help of the Opto-Array results in reliable retinotopic visual deficits in a luminance discrimination task. We separately confirmed that Opto-Array illumination results in local neural silencing, and that behavioral effects are not due to tissue heating. These results demonstrate the effectiveness of the Opto-Array for behavioral optogenetic applications in large brains.


Subject(s)
Brain/physiology , Optogenetics/methods , Prostheses and Implants , Animals , Behavior, Animal , Electronics/methods , Fiber Optic Technology , Macaca mulatta , Male , Visual Cortex
SELECTION OF CITATIONS
SEARCH DETAIL
...