Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 26(71): 17203-17211, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-32964504

ABSTRACT

The syntheses of the two novel complexes [Ag{Mo/W(CO)6 }2 ]+ [F-{Al(ORF )3 }2 ]- (RF =C(CF3 )3 ) are reported along with their structural and spectroscopic characterization. The X-ray structure shows that three carbonyl ligands from each M(CO)6 fragment bend towards the silver atom within binding Ag-C distance range. DFT calculations of the free cations [Ag{M(CO)6 }2 ]+ (M=Cr, Mo, W) in the electronic singlet state give equilibrium structures with C2 symmetry with two bridging carbonyl groups from each hexacarbonyl ligand. Similar structures with C2 symmetry (M=Nb) and D2 symmetry (M=V, Ta) are calculated for the isoelectronic group 5 anions [Ag{M(CO)6 }2 ]- (M=V, Nb, Ta). The electronic structure of the cations is analyzed with the QTAIM and EDA-NOCV methods, which provide detailed information about the nature of the chemical bonds between Ag+ and the {M(CO)6 }2 q (q = -2, M = V, Nb, Ta; q = 0, M = Cr, Mo, W) ligands.

2.
Chem Sci ; 11(14): 3592-3603, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-34094047

ABSTRACT

Oxidation of M(CO)6 (M = Cr, Mo, W) with the synergistic oxidative system Ag[WCA]/0.5 I2 yields the fully characterized metalloradical salts [M(CO)6]+˙[WCA]- (weakly coordinating anion WCA = [F-{Al(ORF)3}2]-, RF = C(CF3)3). The new metalloradical cations with M = Mo and W showcase a similar structural fluxionality as the previously reported [Cr(CO)6]+˙. Their reactivity increases from M = Cr < Mo < W and their syntheses allow for in-depth insights into the properties of the group 6 carbonyl triad. Furthermore, the reaction of NO+[WCA]- with neutral carbonyl complexes M(CO)6 gives access to the heteroleptic carbonyl/nitrosyl cations [M(CO)5(NO)]+ as salts of the WCA [Al(ORF)4]-, the first complete transition metal triad of their kind.

3.
Angew Chem Int Ed Engl ; 59(14): 5581-5585, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-31846555

ABSTRACT

The oxidation of Fe(CO)5 with the [NO]+ salt of the weakly coordinating perfluoroalkoxyaluminate anion [F-{Al(ORF )3 }2 ]- (RF =C(CF3 )3 ) leads to stable salts of the 18 valence electron (VE) species [Fe(CO)4 (NO)]+ and [Fe(CO)(NO)3 ]+ with the Enemark-Feltham numbers of {FeNO}8 and {FeNO}10 . This finally concludes the triad of heteroleptic iron carbonyl/nitrosyl complexes, since the first discovery of the anionic ([Fe(CO)3 (NO)]- ) and neutral ([Fe(CO)2 (NO)2 ]) species over 80 years ago. Both complexes were fully characterized (IR, Raman, NMR, UV/Vis, scXRD, pXRD) and are stable at room temperature under inert conditions over months and may serve as useful starting materials for further investigations.

4.
Angew Chem Int Ed Engl ; 58(28): 9586-9589, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31050097

ABSTRACT

Although similar to carbon monoxide, the chemistry of homoleptic nitrogen monoxide complexes is fundamentally unexplored compared to their carbonyl analogues. Herein we report the synthesis of the first truly homoleptic transition-metal nitrosyl cation as the salt of the weakly coordinating anions (WCAs) [Al(ORF )4 ]- and [F{Al(ORF )3 }2 ]- (RF =C(CF3 )3 ). These salts are easily accessible in good yields, phase pure, and were fully characterized by IR/Raman, NMR and UV/Vis spectroscopy as well as single-crystal and powder X-ray diffraction. They may serve as unprecedented simple model systems for theoretical and experimental studies of nitrosyl complexes.

5.
Nat Commun ; 10(1): 624, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733449

ABSTRACT

Homoleptic carbonyl radical cations are a textbook family of complexes hitherto unknown in the condensed phase, leaving their properties and applications fundamentally unexplored. Here we report on two stable 17-electron [Cr(CO)6]•+ salts that were synthesized by oxidation of Cr(CO)6 with [NO]+[Al(ORF)4]- (RF = C(CF3)3)) in CH2Cl2 and with removal of NO gas. Longer reaction times led to NO/CO ligand exchange and formation of the thermodynamically more stable 18-electron species [Cr(CO)5(NO)]+, which belongs to the family of heteroleptic chromium carbonyl/nitrosyl cations. All salts were fully characterized (IR, Raman, EPR, NMR, scXRD, pXRD, magnetics) and are stable at room temperature under inert conditions over months. The facile synthesis of these species enables the thorough investigation of their properties and applications to a broad scientific community.

6.
Chem Sci ; 9(35): 7058-7068, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30310626

ABSTRACT

By reaction of the Lewis acid Me3Si-F-Al(ORF)3 with a series of [PF6]- salts, gaseous PF5 and Me3Si-F are liberated and salts of the anion [F-Al(ORF)3]- ([f-al]-; RF = C(CF3)3) can be obtained. By addition of another equivalent of Me3Si-F-Al(ORF)3 to [f-al]-, gaseous Me3Si-F is released and salts of the least coordinating anion [(RFO)3Al-F-Al(ORF)3]- ([al-f-al]-) are formed. Both procedures work for a series of synthetically useful cations including Ag+, [NO]+, [Ph3C]+ and in very clean reactions with 5 g batch sizes giving excellent yields typically exceeding 90%. In addition, the synthesis of Me3Si-F-Al(ORF)3 has been optimized and scaled up to 85 g batches in an one-pot procedure. These anions could previously only be obtained by difficult to control decomposition reactions of [Al(ORF)4]- or by halide abstraction reactions with Me3Si-F-Al(ORF)3, generating relatively large countercations that are unsuited for further use as universal starting materials. Especially [al-f-al]- is of interest for the stabilization of reactive cations, since it is even weaker coordinating than [Al(ORF)4]- and more stable against strong electrophiles. This bridged anion can be seen as an adduct of [f-al]- and Al(ORF)3. Thus, it is similarly Lewis acidic as BF3 and eventually reacts with nucleophiles (Nu) from the reaction environment to yield Nu-Al(ORF)3 and [f-al]-. This prevents working with [al-f-al]- salts in ethereal or other donor solvents. By contrast, the [f-al]- anion is no longer Lewis acidic and may therefore be used for reactions involving stronger nucleophiles than the [al-f-al]- anion can withstand. Subsequently it may be transformed into the [al-f-al]- salt by simple addition of one equivalent of Me3Si-F-Al(ORF)3.

SELECTION OF CITATIONS
SEARCH DETAIL
...