Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 3: 2299, 2013.
Article in English | MEDLINE | ID: mdl-23903555

ABSTRACT

Resonant elastic x-ray scattering (REXS) is an exquisite element-sensitive tool for the study of subtle charge, orbital, and spin superlattice orders driven by the valence electrons, which therefore escape detection in conventional x-ray diffraction (XRD). Although the power of REXS has been demonstrated by numerous studies of complex oxides performed in the soft x-ray regime, the cross section and photon wavelength of the material-specific elemental absorption edges ultimately set the limit to the smallest superlattice amplitude and periodicity one can probe. Here we show--with simulations and REXS on Mn-substituted Sr3Ru2O7--that these limitations can be overcome by performing resonant scattering experiments at the absorption edge of a suitably-chosen, dilute impurity. This establishes that--in analogy with impurity-based methods used in electron-spin-resonance, nuclear-magnetic resonance, and Mössbauer spectroscopy--randomly distributed impurities can serve as a non-invasive, but now momentum-dependent probe, greatly extending the applicability of resonant x-ray scattering techniques.


Subject(s)
Metals/chemistry , Models, Chemical , X-Ray Diffraction/methods , Computer Simulation , Electrons , Scattering, Radiation
2.
Phys Rev Lett ; 102(3): 037205, 2009 Jan 23.
Article in English | MEDLINE | ID: mdl-19257388

ABSTRACT

X-ray diffraction with photon energies near the Ru L2-absorption edge was used to detect resonant reflections characteristic of a G-type superstructure in RuSr2GdCu2O8 single crystals. A polarization analysis confirms that these reflections are due to magnetic order of Ru moments, and the azimuthal-angle dependence of the scattering amplitude reveals that the moments lie along a low-symmetry axis with substantial components parallel and perpendicular to the RuO2 layers. Complemented by susceptibility data and a symmetry analysis of the magnetic structure, these results reconcile many of the apparently contradictory findings reported in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...