Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 22(5): 1076-87, 2009 May.
Article in English | MEDLINE | ID: mdl-19302094

ABSTRACT

We investigated the mating system and population genetic structure of the invasive haplodiploid palm-seed borer Coccotrypes dactyliperda in California. We focused on whether these primarily inbreeding beetles have a 'mixed-breeding' system that includes occasional outbreeding, and whether local inbreeding coefficients (F(IS)) varied with dominant environmental factors. We also analysed the genetic structure of C. dactyliperda populations across local and regional scales. Based on the analysis of genetic variation at seven microsatellite loci in 1034 individual beetles from 59 populations, we found both high rates of inbreeding and plentiful evidence of mixed-breeding. F(IS) ranged from -0.56 to 0.90, the highest variability reported within any animal species. There was a negative correlation between F(IS) and latitude, suggesting that some latitude-associated factor affecting mating decisions influenced inbreeding rates. Multiple regressions suggested that precipitation, but not temperature, may be an important correlate. Finally, we found highly significant genetic differentiation among sites, even over short geographic distances (< 1000 m).


Subject(s)
Coleoptera/genetics , Genetic Variation , Genetics, Population , Inbreeding , Introduced Species , Sexual Behavior, Animal/physiology , Animals , California , Geography , Microsatellite Repeats/genetics , Regression Analysis
2.
Mol Ecol Resour ; 9(3): 767-70, 2009 May.
Article in English | MEDLINE | ID: mdl-21564739

ABSTRACT

Morphological identification of many fairy shrimp species is difficult because distinguishing characters are restricted to adults. We developed two multiplex polymerase chain reaction assays that differentiate among three Branchinecta fairy shrimp with distributional overlap in southern California vernal pools. Two of the species are federally listed as threatened. Molecular identification of Branchinecta from cysts allows for species surveys to be conducted during the dry season, expanding the timeframe for population assessment and providing a less intrusive method of sampling sensitive vernal pool habitats.

4.
Q Rev Biol ; 74(1): 21-45, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10081813

ABSTRACT

The accuracy of gene flow estimates is unknown in most natural populations because direct estimates of dispersal are often not possible. These estimates can be highly imprecise or even biased because population genetic structure reflects more than a simple balance between genetic drift and gene flow. Most of the models used to estimate gene flow also assume very simple patterns of movement. As a result, multiple interpretations of population structure involving contemporary gene flow, departures from equilibrium, and other factors are almost always possible. One way to isolate the relative contribution of gene flow to population genetic differentiation is to utilize comparative methods. Population genetic statistics such as FST, heterozygosity and Nei's D can be compared between species with differing dispersal abilities if these species are otherwise phylogenetically, geographically and demographically comparable. Accordingly, the available literature was searched for all groups that meet these criteria to determine whether broad conclusions regarding the relationships between dispersal, population genetic structure, and gene flow estimates are possible. Allozyme and mtDNA data were summarized for 27 animal groups in which dispersal differences can be characterized. In total, genetic data were obtained for 333 species of vertebrates and invertebrates from terrestrial, freshwater and marine habitats. Across these groups, dispersal ability was consistently related to population structure, with a mean rank correlation of -0.72 between ranked dispersal ability and FST. Gene flow estimates derived from private alleles were also correlated with dispersal ability, but were less widely available. Direct-count heterozygosity and average values of Nei's D showed moderate degrees of correlation with dispersal ability. Thus, despite regional, taxonomic and methodological differences among the groups of species surveyed, available data demonstrate that dispersal makes a measurable contribution to population genetic differentiation in the majority of animal species in nature, and that gene flow estimates are rarely so overwhelmed by population history, departures from equilibrium, or other microevolutionary forces as to be uninformative.


Subject(s)
Biological Evolution , Genetics, Population , Population Dynamics , Animals , DNA/genetics , Heterozygote , Invertebrates/genetics , Models, Genetic , Vertebrates/genetics
5.
Trends Ecol Evol ; 13(9): 360, 1998 Sep 01.
Article in English | MEDLINE | ID: mdl-21238343
SELECTION OF CITATIONS
SEARCH DETAIL
...