Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38559207

ABSTRACT

Stroke is a leading cause of disability and the third cause of death. The immune system plays an essential role in post-stroke recovery. After an ischemic stroke, monocytes infiltrate the injured brain tissue and can exacerbate or mitigate the damage. Ischemic stroke is more prevalent in the aged population, and the aging brain exhibits an altered immune response. There are also sex disparities in ischemic stroke incidence, outcomes, and recovery, and these differences may be hormone-driven and determined by genetic and epigenetic factors. Here, we studied whether human peripheral blood monocyte subtype (classical, intermediate, and non-classical) expression of neuronal inflammation- and regeneration-related genes depends on age and sex. A FACS analysis of blood samples from 44 volunteers (male and female, aged 28 to 98) showed that in contrast to other immune cells, the proportion of natural killer cells increased in females. The proportion of B-cells decreased in both sexes with age, and subtypes of monocytes were not linked to age or sex. Gene expression analysis by qPCR identified several genes differentially correlating with age and sex within different monocyte subtypes. Interestingly, ANXA1 and CD36 showed a consistent increase with aging in all monocytes, specifically in intermediate (CD36) and intermediate and non-classical (ANXA1) subtypes. Other genes (IL-1ß, S100A8, TNFα, CD64, CD33, TGFß1, TLR8, CD91) were differentially changed in monocyte subtypes with increased aging. Most age-dependent gene changes were differentially expressed in female monocytes. Our data shed light on the nuanced interplay of age and sex in shaping the expression of inflammation- and regeneration-related genes within distinct monocyte subtypes. Understanding these dynamics could pave the way for targeted interventions and personalized approaches in post-stroke care, particularly for the aging population and individuals of different sexes.

3.
Blood Adv ; 7(18): 5325-5340, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37379274

ABSTRACT

Knowledge of human fetal blood development and how it differs from adult blood is highly relevant to our understanding of congenital blood and immune disorders and childhood leukemia, of which the latter can originate in utero. Blood formation occurs in waves that overlap in time and space, adding to heterogeneity, which necessitates single-cell approaches. Here, a combined single-cell immunophenotypic and transcriptional map of first trimester primitive blood development is presented. Using CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing), the molecular profile of established immunophenotype-gated progenitors was analyzed in the fetal liver (FL). Classical markers for hematopoietic stem cells (HSCs), such as CD90 and CD49F, were largely preserved, whereas CD135 (FLT3) and CD123 (IL3R) had a ubiquitous expression pattern capturing heterogenous populations. Direct molecular comparison with an adult bone marrow data set revealed that the HSC state was less frequent in FL, whereas cells with a lymphomyeloid signature were more abundant. An erythromyeloid-primed multipotent progenitor cluster was identified, potentially representing a transient, fetal-specific population. Furthermore, differentially expressed genes between fetal and adult counterparts were specifically analyzed, and a fetal core signature was identified. The core gene set could separate subgroups of acute lymphoblastic leukemia by age, suggesting that a fetal program may be partially retained in specific subgroups of pediatric leukemia. Our detailed single-cell map presented herein emphasizes molecular and immunophenotypic differences between fetal and adult blood cells, which are of significance for future studies of pediatric leukemia and blood development in general.


Subject(s)
Leukemia , Multiomics , Adult , Humans , Child , Hematopoietic Stem Cells/metabolism , Bone Marrow/metabolism , Hematopoiesis/genetics , Leukemia/metabolism
4.
STAR Protoc ; 4(1): 101965, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36633951

ABSTRACT

Here we describe an in vitro co-culture system that can differentiate hematopoietic progenitor populations to all major hematopoietic lineages at clonal level. We present both a sensitive single-cell switch-culture system as well as a less laborious alternative barcoding protocol more convenient for larger cell numbers. Importantly, generation of all lineages from single long-term hematopoietic stem cells are described, following 21 days of culture. This protocol represents an efficient tool for validation experiments for single-cell genomics data. For complete details on the use and execution of this protocol, please refer to Safi et al. (2022).1.


Subject(s)
Hematopoietic Stem Cells , Animals , Mice , Cell Differentiation/genetics , Coculture Techniques
5.
Nat Commun ; 13(1): 7124, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36411286

ABSTRACT

The ETV6-RUNX1 onco-fusion arises in utero, initiating a clinically silent pre-leukemic state associated with the development of pediatric B-acute lymphoblastic leukemia (B-ALL). We characterize the ETV6-RUNX1 regulome by integrating chromatin immunoprecipitation- and RNA-sequencing and show that ETV6-RUNX1 functions primarily through competition for RUNX1 binding sites and transcriptional repression. In pre-leukemia, this results in ETV6-RUNX1 antagonization of cell cycle regulation by RUNX1 as evidenced by mass cytometry analysis of B-lineage cells derived from ETV6-RUNX1 knock-in human pluripotent stem cells. In frank leukemia, knockdown of RUNX1 or its co-factor CBFß results in cell death suggesting sustained requirement for RUNX1 activity which is recapitulated by chemical perturbation using an allosteric CBFß-inhibitor. Strikingly, we show that RUNX1 addiction extends to other genetic subtypes of pediatric B-ALL and also adult disease. Importantly, inhibition of RUNX1 activity spares normal hematopoiesis. Our results suggest that chemical intervention in the RUNX1 program may provide a therapeutic opportunity in ALL.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adult , Child , Humans , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factors , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , B-Lymphocytes , Gene Fusion
6.
Cell Rep ; 39(6): 110798, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35545037

ABSTRACT

The emerging notion of hematopoietic stem and progenitor cells (HSPCs) as a low-primed cloud without sharply demarcated gene expression programs raises the question on how cellular-fate options emerge and at which stem-like stage lineage priming is initiated. Here, we investigate single-cell chromatin accessibility of Lineage-, cKit+, and Sca1+ (LSK) HSPCs spanning the early differentiation landscape. Application of a signal-processing algorithm to detect transition points corresponding to massive alterations in accessibility of 571 transcription factor motifs reveals a population of LSK FMS-like tyrosine kinase 3 (Flt3)intCD9high cells that concurrently display stem-like and lineage-affiliated chromatin signatures, pointing to a simultaneous gain of both lympho-myeloid and megakaryocyte-erythroid programs. Molecularly and functionally, these cells position between stem cells and committed progenitors and display multi-lineage capacity in vitro and in vivo but lack self-renewal activity. This integrative molecular analysis resolves the heterogeneity of cells along hematopoietic differentiation and permits investigation of chromatin-mediated transition between multipotency and lineage restriction.


Subject(s)
Chromatin , Hematopoietic Stem Cells , Cell Differentiation , Cell Lineage , Chromatin/metabolism , Gene Expression Regulation , Hematopoietic Stem Cells/metabolism , Megakaryocytes
8.
Blood Adv ; 5(20): 4112-4124, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34432872

ABSTRACT

Myelodysplastic syndrome (MDS) is a hematological malignancy characterized by blood cytopenias and predisposition to acute myeloid leukemia (AML). Therapies for MDS are lacking, particularly those that have an impact in the early stages of disease. We developed a model of MDS in zebrafish with knockout of Rps14, the primary mediator of the anemia associated with del(5q) MDS. These mutant animals display dose- and age-dependent abnormalities in hematopoiesis, culminating in bone marrow failure with dysplastic features. We used Rps14 knockdown to undertake an in vivo small-molecule screening, to identify compounds that ameliorate the MDS phenotype, and we identified imiquimod, an agonist of Toll-like receptor-7 (TLR7) and TLR8. Imiquimod alleviates anemia by promoting hematopoietic stem and progenitor cell expansion and erythroid differentiation, the mechanism of which is dependent on TLR7 ligation and Myd88. TLR7 activation in this setting paradoxically promoted an anti-inflammatory gene signature, indicating cross talk via TLR7 between proinflammatory pathways endogenous to Rps14 loss and the NF-κB pathway. Finally, in highly purified human bone marrow samples from anemic patients, imiquimod led to an increase in erythroid output from myeloerythroid progenitors and common myeloid progenitors. Our findings have both specific implications for the development of targeted therapeutics for del(5q) MDS and wider significance identifying a potential role for TLR7 ligation in modifying anemia.


Subject(s)
Myelodysplastic Syndromes , Zebrafish , Animals , Hematopoiesis , Humans , Myelodysplastic Syndromes/genetics , Signal Transduction , Toll-Like Receptor 7/genetics
9.
Front Cell Dev Biol ; 9: 660350, 2021.
Article in English | MEDLINE | ID: mdl-34055791

ABSTRACT

Developmental hematopoiesis differs from adult and is far less described. In the developing embryo, waves of lineage-restricted blood precede the ultimate emergence of definitive hematopoietic stem cells (dHSCs) capable of maintaining hematopoiesis throughout life. During the last two decades, the advent of single-cell genomics has provided tools to circumvent previously impeding characteristics of embryonic hematopoiesis, such as cell heterogeneity and rare cell states, allowing for definition of lineage trajectories, cellular hierarchies, and cell-type specification. The field has rapidly advanced from microfluidic platforms and targeted gene expression analysis, to high throughput unbiased single-cell transcriptomic profiling, single-cell chromatin analysis, and cell tracing-offering a plethora of tools to resolve important questions within hematopoietic development. Here, we describe how these technologies have been implemented to address a wide range of aspects of embryonic hematopoiesis ranging from the gene regulatory network of dHSC formation via endothelial to hematopoietic transition (EHT) and how EHT can be recapitulated in vitro, to hematopoietic trajectories and cell fate decisions. Together, these studies have important relevance for regenerative medicine and for our understanding of genetic blood disorders and childhood leukemias.

10.
STAR Protoc ; 2(2): 100420, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33899010

ABSTRACT

In vitro differentiation of human pluripotent stem cells (hPSCs) offers a genetically tractable system to examine the physiology and pathology of human tissue development and differentiation. We have used this approach to model the earliest stages of human B lineage development and characterize potential target cells for the in utero initiation of childhood B acute lymphoblastic leukemia. Herein, we detail critical aspects of the protocol including reagent validation, controls, and examples of surface markers used for analysis and cell sorting. For complete details on the use and execution of this protocol, please refer to Boiers et al. (2018).


Subject(s)
B-Lymphocytes/cytology , Coculture Techniques/methods , Pluripotent Stem Cells/cytology , Animals , Cell Line , Cell Separation , Humans , Leukemia, Lymphoid , Mice
11.
Nat Commun ; 11(1): 4989, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020476

ABSTRACT

We postulate that exit from pluripotency involves intermediates that retain pluripotency while simultaneously exhibiting lineage-bias. Using a MIXL1 reporter, we explore mesoderm lineage-bias within the human pluripotent stem cell compartment. We identify a substate, which at the single cell level coexpresses pluripotent and mesodermal gene expression programmes. Functionally these cells initiate stem cell cultures and exhibit mesodermal bias in differentiation assays. By promoting mesodermal identity through manipulation of WNT signalling while preventing exit from pluripotency using lysophosphatidic acid, we 'trap' and maintain cells in a lineage-biased stem cell state through multiple passages. These cells correspond to a normal state on the differentiation trajectory, the plasticity of which is evidenced by their reacquisition of an unbiased state upon removal of differentiation cues. The use of 'cross-antagonistic' signalling to trap pluripotent stem cell intermediates with different lineage-bias may have general applicability in the efficient production of cells for regenerative medicine.


Subject(s)
Cellular Reprogramming , Mesoderm/metabolism , Pluripotent Stem Cells/cytology , Animals , Cell Differentiation/genetics , Cell Line , Cell Lineage , Cell Plasticity/genetics , Cell Self Renewal , Culture Media , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Humans , Mice , Pluripotent Stem Cells/metabolism , Signal Transduction/genetics
12.
Regen Med ; 14(3): 243-255, 2019 03.
Article in English | MEDLINE | ID: mdl-30938271

ABSTRACT

Human stem cells have the potential to transform medicine. However, hurdles remain to ensure that manufacturing processes produce safe and effective products. A thorough understanding of the biological processes occurring during manufacture is fundamental to assuring these qualities and thus, their acceptability to regulators and clinicians. Leaders in both human pluripotent and somatic stem cells, were brought together with experts in clinical translation, biomanufacturing and regulation, to discuss key issues in assuring appropriate manufacturing conditions for delivery of effective and safe products from these cell types. This report summarizes the key issues discussed and records consensus reached by delegates and emphasizes the need for accurate language and nomenclature in the scientific discourse around stem cells.


Subject(s)
Adult Stem Cells/cytology , Cell Culture Techniques/methods , Cell Differentiation , Cell- and Tissue-Based Therapy/methods , Pluripotent Stem Cells/cytology , Regenerative Medicine , Congresses as Topic , Humans
13.
Nature ; 557(7703): 112-117, 2018 05.
Article in English | MEDLINE | ID: mdl-29695863

ABSTRACT

The linear ubiquitin chain assembly complex (LUBAC) is required for optimal gene activation and prevention of cell death upon activation of immune receptors, including TNFR1 1 . Deficiency in the LUBAC components SHARPIN or HOIP in mice results in severe inflammation in adulthood or embryonic lethality, respectively, owing to deregulation of TNFR1-mediated cell death2-8. In humans, deficiency in the third LUBAC component HOIL-1 causes autoimmunity and inflammatory disease, similar to HOIP deficiency, whereas HOIL-1 deficiency in mice was reported to cause no overt phenotype9-11. Here we show, by creating HOIL-1-deficient mice, that HOIL-1 is as essential for LUBAC function as HOIP, albeit for different reasons: whereas HOIP is the catalytically active component of LUBAC, HOIL-1 is required for LUBAC assembly, stability and optimal retention in the TNFR1 signalling complex, thereby preventing aberrant cell death. Both HOIL-1 and HOIP prevent embryonic lethality at mid-gestation by interfering with aberrant TNFR1-mediated endothelial cell death, which only partially depends on RIPK1 kinase activity. Co-deletion of caspase-8 with RIPK3 or MLKL prevents cell death in Hoil-1-/- (also known as Rbck1-/-) embryos, yet only the combined loss of caspase-8 with MLKL results in viable HOIL-1-deficient mice. Notably, triple-knockout Ripk3-/-Casp8-/-Hoil-1-/- embryos die at late gestation owing to haematopoietic defects that are rescued by co-deletion of RIPK1 but not MLKL. Collectively, these results demonstrate that both HOIP and HOIL-1 are essential LUBAC components and are required for embryogenesis by preventing aberrant cell death. Furthermore, they reveal that when LUBAC and caspase-8 are absent, RIPK3 prevents RIPK1 from inducing embryonic lethality by causing defects in fetal haematopoiesis.


Subject(s)
Carrier Proteins/metabolism , Cell Death , Embryonic Development , Hematopoiesis , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Caspase 8/genetics , Caspase 8/metabolism , Cell Death/genetics , Embryo Loss/genetics , Embryonic Development/genetics , Endothelial Cells/cytology , Female , Hematopoiesis/genetics , Mice , Mice, Inbred C57BL , Protein Domains , Protein Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptors, Tumor Necrosis Factor, Type I/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/genetics
14.
Dev Cell ; 44(3): 362-377.e7, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29290585

ABSTRACT

ETV6-RUNX1 is associated with childhood acute B-lymphoblastic leukemia (cALL) functioning as a first-hit mutation that initiates a clinically silent pre-leukemia in utero. Because lineage commitment hierarchies differ between embryo and adult, and the impact of oncogenes is cell-context dependent, we hypothesized that the childhood affiliation of ETV6-RUNX1 cALL reflects its origins in a progenitor unique to embryonic life. We characterize the first emerging B cells in first-trimester human embryos, identifying a developmentally restricted CD19-IL-7R+ progenitor compartment, which transitions from a myeloid to lymphoid program during ontogeny. This developmental series is recapitulated in differentiating human pluripotent stem cells (hPSCs), thereby providing a model for the initiation of cALL. Genome-engineered hPSCs expressing ETV6-RUNX1 from the endogenous ETV6 locus show expansion of the CD19-IL-7R+ compartment, show a partial block in B lineage commitment, and produce proB cells with aberrant myeloid gene expression signatures and potential: features (collectively) consistent with a pre-leukemic state.


Subject(s)
B-Lymphocytes/pathology , Core Binding Factor Alpha 2 Subunit/metabolism , Embryonic Development , Gene Expression Regulation, Leukemic , Induced Pluripotent Stem Cells/pathology , Myeloid Cells/pathology , Oncogene Proteins, Fusion/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Acute Disease , B-Lymphocytes/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Myeloid Cells/metabolism , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Pregnancy , Pregnancy Trimester, First , Receptors, Interleukin-7 , Transcriptome
15.
Br J Haematol ; 183(4): 588-600, 2018 11.
Article in English | MEDLINE | ID: mdl-30596405

ABSTRACT

Given that FLT3 expression is highly restricted on lymphoid progenitors, it is possible that the established role of FLT3 in the regulation of B and T lymphopoiesis reflects its high expression and role in regulation of lymphoid-primed multipotent progenitors (LMPPs) or common lymphoid progenitors (CLPs). We generated a Flt3 conditional knock-out (Flt3fl/fl) mouse model to address the direct role of FLT3 in regulation of lymphoid-restricted progenitors, subsequent to turning on Rag1 expression, as well as potentially ontogeny-specific roles in B and T lymphopoiesis. Our studies establish a prominent and direct role of FLT3, independently of the established role of FLT3 in regulation of LMPPs and CLPs, in regulation of fetal as well as adult early B cell progenitors, and the early thymic progenitors (ETPs) in adult mice but not in the fetus. Our findings highlight the potential benefit of targeting poor prognosis acute B-cell progenitor leukaemia and ETP leukaemia with recurrent FLT3 mutations using clinical FLT3 inhibitors.


Subject(s)
Bone Marrow Cells/metabolism , Cell Differentiation , Lymphoid Progenitor Cells/metabolism , Lymphopoiesis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , fms-Like Tyrosine Kinase 3/metabolism , Animals , Bone Marrow Cells/pathology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Lymphoid Progenitor Cells/pathology , Mice , Mice, Knockout , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Thymus Gland/metabolism , Thymus Gland/pathology , fms-Like Tyrosine Kinase 3/genetics
17.
Cell Rep ; 19(1): 10-19, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28380349

ABSTRACT

During development, hematopoietic cells originate from endothelium in a process known as endothelial-to-hematopoietic transition (EHT). To study human EHT, we coupled flow cytometry and single-cell transcriptional analyses of human pluripotent stem cell-derived CD34+ cells. The resulting transcriptional hierarchy showed a continuum of endothelial and hematopoietic signatures. At the interface of these two signatures, a unique group of cells displayed both an endothelial signature and high levels of key hematopoietic stem cell-associated genes. This interphase group was validated via sort and subculture as an immediate precursor to hematopoietic cells. Differential expression analyses further divided this population into subgroups, which, upon subculture, showed distinct hematopoietic lineage differentiation potentials. We therefore propose that immediate precursors to hematopoietic cells already have their hematopoietic lineage restrictions defined prior to complete downregulation of the endothelial signature. These findings increase our understanding of the processes of de novo hematopoietic cell generation in the human developmental context.


Subject(s)
Endothelial Cells/metabolism , Hematopoiesis/physiology , Hematopoietic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Antigens, CD34/metabolism , Cell Lineage , Cells, Cultured , Down-Regulation , Endothelial Cells/cytology , Endothelium/metabolism , Flow Cytometry , Hematopoietic Stem Cells/cytology , Humans , Leukosialin/metabolism , Pluripotent Stem Cells/cytology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Repressor Proteins/metabolism , Single-Cell Analysis , Wiskott-Aldrich Syndrome Protein/metabolism , ETS Translocation Variant 6 Protein
18.
Nat Immunol ; 17(12): 1424-1435, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27695000

ABSTRACT

The final stages of restriction to the T cell lineage occur in the thymus after the entry of thymus-seeding progenitors (TSPs). The identity and lineage potential of TSPs remains unclear. Because the first embryonic TSPs enter a non-vascularized thymic rudiment, we were able to directly image and establish the functional and molecular properties of embryonic thymopoiesis-initiating progenitors (T-IPs) before their entry into the thymus and activation of Notch signaling. T-IPs did not include multipotent stem cells or molecular evidence of T cell-restricted progenitors. Instead, single-cell molecular and functional analysis demonstrated that most fetal T-IPs expressed genes of and had the potential to develop into lymphoid as well as myeloid components of the immune system. Moreover, studies of embryos deficient in the transcriptional regulator RBPJ demonstrated that canonical Notch signaling was not involved in pre-thymic restriction to the T cell lineage or the migration of T-IPs.


Subject(s)
Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Lymphoid Progenitor Cells/physiology , Myeloid Progenitor Cells/physiology , Receptors, Notch/metabolism , T-Lymphocytes/physiology , Thymus Gland/immunology , Animals , Cell Differentiation , Cell Lineage , Cell Movement , Cells, Cultured , Fetus , Gene Expression Regulation, Developmental , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction
19.
Blood ; 128(2): 217-26, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27207794

ABSTRACT

Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19(+) B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R(+)CD19(+) ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R(+) myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R(+) myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported.


Subject(s)
Cell Lineage/physiology , Fetus/metabolism , Lymphopoiesis/physiology , Precursor Cells, B-Lymphoid/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Animals , Fetus/cytology , Mice , Mice, Knockout , Precursor Cells, B-Lymphoid/cytology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
20.
Cell Stem Cell ; 13(5): 535-48, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24054998

ABSTRACT

In jawed vertebrates, development of an adaptive immune-system is essential for protection of the born organism against otherwise life-threatening pathogens. Myeloid cells of the innate immune system are formed early in development, whereas lymphopoiesis has been suggested to initiate much later, following emergence of definitive hematopoietic stem cells (HSCs). Herein, we demonstrate that the embryonic lymphoid commitment process initiates earlier than previously appreciated, prior to emergence of definitive HSCs, through establishment of a previously unrecognized entirely immune-restricted and lymphoid-primed progenitor. Notably, this immune-restricted progenitor appears to first emerge in the yolk sac and contributes physiologically to the establishment of lymphoid and some myeloid components of the immune-system, establishing the lymphomyeloid lineage restriction process as an early and physiologically important lineage-commitment step in mammalian hematopoiesis.


Subject(s)
Hematopoietic Stem Cells/cytology , Animals , Cell Differentiation/physiology , Cells, Cultured , Female , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Hematopoietic Stem Cells/metabolism , Lymphocytes/cytology , Lymphocytes/metabolism , Male , Mice , Myeloid Cells/cytology , Myeloid Cells/metabolism , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...