Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(10): 12339-12352, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38425008

ABSTRACT

Progress in electrochemical water-splitting devices as future renewable and clean energy systems requires the development of electrodes composed of efficient and earth-abundant bifunctional electrocatalysts. This study reveals a novel flexible and bifunctional electrode (NiO@CNTR) by hybridizing macroscopically assembled carbon nanotube ribbons (CNTRs) and atmospheric plasma-synthesized NiO quantum dots (QDs) with varied loadings to demonstrate bifunctional electrocatalytic activity for stable and efficient overall water-splitting (OWS) applications. Comparative studies on the effect of different electrolytes, e.g., acid and alkaline, reveal a strong preference for alkaline electrolytes for the developed NiO@CNTR electrode, suggesting its bifunctionality for both HER and OER activities. Our proposed NiO@CNTR electrode demonstrates significantly enhanced overall catalytic performance in a two-electrode alkaline electrolyzer cell configuration by assembling the same electrode materials as both the anode and the cathode, with a remarkable long-standing stability retaining ∼100% of the initial current after a 100 h long OWS run, which is attributed to the "synergistic coupling" between NiO QD catalysts and the CNTR matrix. Interestingly, the developed electrode exhibits a cell potential (E10) of only 1.81 V with significantly low NiO QD loading (83 µg/cm2) compared to other catalyst loading values reported in the literature. This study demonstrates a potential class of carbon-based electrodes with single-metal-based bifunctional catalysts that opens up a cost-effective and large-scale pathway for further development of catalysts and their loading engineering suitable for alkaline-based OWS applications and green hydrogen generation.

2.
J Colloid Interface Sci ; 658: 986-996, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38159359

ABSTRACT

HYPOTHESIS: By altering aerosol growth dynamics with unipolar charges, one can obtain aerosols with narrow particles size distributions, a highly desirable feature in applications of functional nanoparticles. EXPERIMENTS: Unlike liquid colloid systems, aerosol particles in the free molecular regime undergo coarsening due to Brownian coagulation and will eventually attain a self-preserving size distribution with a typical geometric standard deviation of 1.46 - 1.48. We developed a novel continuous one-step aerosol synthesis reactor that produces iron nanoparticles from ferrocene at ambient conditions, which confines the site of precursor breakdown and particle formation in the downstream vicinity of a positive corona discharge. FINDINGS: We demonstrated that the particle size could be controlled within 3 - 10 nm with a suppressed geometric standard deviation (1.15 - 1.35). The as-produced iron nanoparticles were successfully used as catalyst for the growth of single-walled carbon nanotubes with a narrow diameter range. With a transient aerosol dynamics model, we showed that a fraction (as small as 0.1%) of unipolar-charged particles could have a significant impact on the aerosol growth dynamics, which eventually results in a narrower particle size distribution with smaller size and higher number concentrations.

3.
Nanomaterials (Basel) ; 13(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37999313

ABSTRACT

The ion exchange of Na+ cations was used to photosensitise titanates nanotubes (Ti-NTs) with tris(2,2'-bipyridine)ruthenium(II) cations (Ru(bpy)32+); this yielded a light-sensitised Ti-NTs composite denoted as (Ru(bpy)3)Ti-NTs, exhibiting the characteristic absorption of Ru(bpy)32+ in visible light. Incident photon-to-current efficiency (IPCE) measurements and the photocatalytic reduction of methyl viologen reaction confirmed that in the photosensitisation of the (Ru(bpy)3)Ti-NTs composite, charge transfer and charge separation occur upon excitation by ultraviolet and visible light irradiation. The photocatalytic potential of titanate nanotubes was tested in the water-splitting reaction and the H2 evolution reaction using a sacrificial agent and showed photocatalytic activity under various light sources, including xenon-mercury lamp, simulated sunlight, and visible light. Notably, in the conditions of the H2 evolution reaction when (Ru(bpy)3)Ti-NTs were submitted to simulated sunlight, they exceeded the photocatalytic activity of pristine Ti-NTs and TiO2 by a factor of 3 and 3.5 times, respectively. Also, (Ru(bpy)3)Ti-NTs achieved the photocatalytic water-splitting reaction under simulated sunlight and visible light, producing, after 4 h, 199 and 282 µmol×H2×gcat-1. These results confirm the effective electron transfer of Ru(bpy)3 to titanate nanotubes. The stability of the photocatalyst was evaluated by a reuse test of four cycles of 24 h reactions without considerable loss of catalytic activity and crystallinity.

4.
Environ Int ; 178: 108047, 2023 08.
Article in English | MEDLINE | ID: mdl-37419058

ABSTRACT

The purpose of this study was to identify a characteristic elemental tyre fingerprint that can be utilised in atmospheric source apportionment calculations. Currently zinc is widely used as a single element tracer to quantify tyre wear, however several authors have highlighted issues with this approach. To overcome this, tyre rubber tread was digested and has been analysed for 25 elements by ICP-MS to generate a multielement profile. Additionally, to estimate the percentage of the tyre made up of inert fillers, thermogravimetric analysis was performed on a subset. Comparisons were made between passenger car and heavy goods vehicle tyre composition, and a subset of tyres had both tread and sidewall sampled for further comparison. 19 of the 25 elements were detected in the analysis. The mean mass fraction of zinc detected was 11.17 g/kg, consistent with previous estimates of 1% of the tyre mass. Aluminium, iron, and magnesium were found to be the next most abundant elements. Only one source profile for tyre wear exists in both the US and EU air pollution species profile databases, highlighting the need for more recent data with better coverage of tyre makes and models. This study provides data on new tyres which are currently operating on-road in Europe and is therefore relevant for ongoing atmospheric studies assessing the levels of tyre wear particles in urban areas.


Subject(s)
Air Pollution , Rubber , Rubber/analysis , Environmental Monitoring , Air Pollution/analysis , Zinc/analysis , Motor Vehicles
5.
Sci Adv ; 8(50): eabq3515, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36516257

ABSTRACT

Although individual carbon nanotubes (CNTs) are superior to polymer chains, the mechanical and thermal properties of CNT fibers (CNTFs) remain inferior to synthetic fibers because of the failure of embedding CNTs effectively in superstructures. Conventional techniques resulted in a mild improvement of target properties while degrading others. Here, a double-drawing technique is developed to rearrange the constituent CNTs. Consequently, the mechanical and thermal properties of the resulting CNTFs can simultaneously reach their highest performances with specific strength ~3.30 N tex-1 (4.60 GPa), work of rupture ~70 J g-1, and thermal conductivity ~354 W m-1 K-1 despite starting from low-crystallinity materials (IG:ID ~ 5). The processed CNTFs are more versatile than comparable carbon fiber, Zylon and Dyneema. On the basis of evidence of load transfer efficiency on individual CNTs measured with in situ stretching Raman, we find that the main contributors to property enhancements are the increasing of the effective tube contribution.

6.
Article in English | MEDLINE | ID: mdl-36429940

ABSTRACT

The concentration of air pollutants in underground parking garages has been found to be higher compared to ambient air. Vehicle emissions from cold starts are the main sources of air pollution in underground parking garages. Eight days of measurements, using low-cost air sensors, were conducted at one underground parking garage at the University of Minnesota, Minneapolis. The CO, NO, NO2, and PM2.5 daily average concentrations in the parking garage were measured to be higher, by up to more than an order of magnitude, compared to the ambient concentration. There is positive correlation between exit traffic flow and the air concentrations in the parking garage for lung deposited surface area (LDSA), CO2, NO, and CO. Fuel specific emission factors were calculated for CO, NO, and NOx. Ranging from 25 to 28 g/kgfuel for CO, from 1.3 to 1.7 g/kgfuel for NO, and from 2.1 to 2.7 g/kgfuel for NOx. Regulated emissions were also calculated for CO and NOx with values of 2.4 to 2.9 and 0.19 to 0.25 g/mile, respectively. These emissions are about 50% higher than the 2017 U.S. emission standards for CO and nearly an order magnitude higher for NOx.


Subject(s)
Air Pollutants , Air Pollution , United States , Air Pollution/analysis , Vehicle Emissions/analysis , Air Pollutants/analysis
7.
Sensors (Basel) ; 22(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897988

ABSTRACT

This paper reports on the design, and implementation of piezoelectric-on-silicon MEMS resonators installed within a portable experimental setup for sensing nanoparticles in a laboratory environment. MEMS oscillators with a center frequency of approximately 5.999 MHz are employed for sensing 50 nm size-selected silver nanoparticles generated in the laboratory. The same experimental setup is then assembled to sense indoor particles that are present in the laboratory environment. The challenges associated with particle deposition as a result of assembling the portable experimental setup is highlighted. Furthermore, the MEMS oscillators demonstrate that the total mass of silver nanoparticles deposited onto the MEMS resonator surface using the inertial impaction technique-based experimental setup is approximately 7.993 nanograms. The total indoor particle mass accumulated on the MEMS resonator surface is estimated to be approximately 1.732 nanograms and 26.9 picograms for two different runs. The frequency resolution of the MEMS oscillator is estimated to be approximately 32 ppb and, consequently, the minimum detectable particle mass is approximately 60 femtograms for a 9.2 s integration time.


Subject(s)
Metal Nanoparticles , Micro-Electrical-Mechanical Systems , Silicon , Silver
8.
ACS Nano ; 16(6): 9583-9597, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35638849

ABSTRACT

Carbon nanotubes (CNTs) individually exhibit exceptional physical properties, surpassing state-of-the-art bulk materials, but are used commercially primarily as additives rather than as a standalone macroscopic product. This limited use of bulk CNT materials results from the inability to harness the superb nanoscale properties of individual CNTs into macroscopic materials. CNT alignment within a textile has been proven as a critical contributor to narrow this gap. Here, we report the development of an altered direct CNT spinning method based on the floating catalyst chemical vapor deposition process, which directly interacts with the self-assembly of the CNT bundles in the gas phase. The setup is designed to apply an AC electric field to continuously align the CNTs in situ during the formation of CNT bundles and subsequent aerogel. A mesoscale CNT model developed to simulate the alignment process has shed light on the need to employ AC rather than DC fields based on a CNT stiffening effect (z-pinch) induced by a Lorentz force. The AC-aligned synthesis enables a means to control CNT bundle diameters, which broadened from 16 to 25 nm. The resulting bulk CNT textiles demonstrated an increase in the specific electrical and tensile properties (up to 90 and 460%, respectively) without modifying the quantity or quality of the CNTs, as verified by thermogravimetric analysis and Raman spectroscopy, respectively. The enhanced properties were correlated to the degree of CNT alignment within the textile as quantified by small-angle X-ray scattering and scanning electron microscopy image analysis. Clear alignment (orientational order parameter = 0.5) was achieved relative to the pristine material (orientational order parameter = 0.19) at applied field intensities in the range of 0.5-1 kV cm-1 at a frequency of 13.56 MHz.

9.
R Soc Open Sci ; 9(5): 212022, 2022 May.
Article in English | MEDLINE | ID: mdl-35592762

ABSTRACT

There is ongoing and rapid advancement in approaches to modelling the fate of exhaled particles in different environments relevant to disease transmission. It is important that models are verified by comparison with each other using a common set of input parameters to ensure that model differences can be interpreted in terms of model physics rather than unspecified differences in model input parameters. In this paper, we define parameters necessary for such benchmarking of models of airborne particles exhaled by humans and transported in the environment during breathing and speaking.

10.
Environ Sci Technol ; 56(3): 1885-1893, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35044770

ABSTRACT

There have only been a few wintertime studies of heavy-duty vehicle (HDV) NOx emissions in the United States, and while they have observed increased emissions, fleet characterization to identify the cause has been lacking. We have collected wintertime measurements of NOx emission factors from 1591 HDVs at a Utah Port of Entry in December 2020 that includes individual vehicle identification. In general, NOx emission factors for 2011 and newer chassis model year HDV are significantly higher than those for 2017 spring measurements from California. The newest chassis model year HDV (2017-2021) NOx emission factors are similar, indicating no significant emission deterioration over the 5 year period, though they are still approximately a factor of 3 higher than the portable emission measurement on-road enforcement standard. We estimate that ambient temperature increases NOx emissions no more than 25% in the newer HDV, likely through reductions in catalyst efficiencies. NOx emissions increase to a significantly higher level for the 2011-2013 chassis model year vehicles, where within the uncertainties, they have emissions similar to older precontrol vehicles, indicating that they have lost their NOx control capabilities within 8 years. MOVES3 modeling of the Utah fleet underpredicted mean NOx emissions by a factor of 1.8 but the MOVES3 estimate is helped by including a larger fraction of high-emitting glider kit trucks (new chassis with pre-emission control engines) than found in the observations.


Subject(s)
Air Pollutants , Vehicle Emissions , Air Pollutants/analysis , Environmental Monitoring , Motor Vehicles , Nitric Oxide , Nitrogen Oxides/analysis , Utah , Vehicle Emissions/analysis
11.
Nanoscale Adv ; 3(3): 781-788, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-36133850

ABSTRACT

Copper nanoparticles (Cu-NPs) represent a viable low-cost alternative to replace bulk copper or other more expensive NPs (e.g. gold or silver) in various applications such as electronics for electrical contact materials or high conductivity materials. This study deals with the synthesis of well dispersed Cu-NPs by using an Ar + H2 microplasma using a solid copper precursor. The morphological analysis is carried out by electron microscopy showing particles with a mean diameter of 8 nm. Crystallinity and chemical analyses were also carried out by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. In the second step, the Cu-NPs were successfully deposited onto porous carbon nanotube ribbons; surface coverage and the penetration depth of the Cu-NPs inside the CNT ribbon structure were investigated as these can be beneficial for a number of applications. The oxidation state of the Cu-NPs was also studied in detail under different conditions.

12.
Sci Adv ; 6(40)2020 Sep.
Article in English | MEDLINE | ID: mdl-32998901

ABSTRACT

The direct growth of single-walled carbon nanotubes (SWCNTs) with narrow chiral distribution remains elusive despite substantial benefits in properties and applications. Nanoparticle catalysts are vital for SWCNT and more generally nanomaterial synthesis, but understanding their effect is limited. Solid catalysts show promise in achieving chirality-controlled growth, but poor size control and synthesis efficiency hampers advancement. Here, we demonstrate the first synthesis of refractory metal nanoparticles (W, Mo, and Re) with near-monodisperse sizes. High concentrations (N = 105 to 107 cm-3) of nanoparticles (diameter 1 to 5 nm) are produced and reduced in a single process, enabling SWCNT synthesis with controlled chiral angles of 19° ± 5°, demonstrating abundance >93%. These results confirm the interface thermodynamics and kinetic growth theory mechanism, which has been extended here to include temporal dependence of fast-growing chiralities. The solid catalysts are further shown effective via floating catalyst growth, offering efficient production possibilities.

13.
Sensors (Basel) ; 20(11)2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32498465

ABSTRACT

This paper successfully demonstrates the potential of weakly coupled piezoelectric MEMS (Micro-Electro-Mechanical Systems) gravimetric sensors for the detection of ultra-fine particulates. As a proof-of-principle, the detection of diesel soot particles of 100 nanometres or less is demonstrated. A practical monitoring context also exists for diesel soot particles originating from combustion engines, as they are of serious health concern. The MEMS sensors employed in this work operate on the principle of vibration mode-localisation employing an amplitude ratio shift output metric for readout. Notably, gains are observed while comparing parametric sensitivities and the input referred stability for amplitude ratio and resonant frequency variations, demonstrating that the amplitude ratio output metric is particularly suitable for long-term measurements. The soot particle mass directly estimated using coupled MEMS resonators can be correlated to the mass, indirectly estimated using the condensation particle counter used as the reference instrument.

14.
Sci Rep ; 10(1): 7160, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32345986

ABSTRACT

Recent increases in marijuana use and legalization without adequate knowledge of the risks necessitate the characterization of the billions of nanoparticles contained in each puff of smoke. Tobacco smoke offers a benchmark given that it has been extensively studied. Tobacco and marijuana smoke particles are quantitatively similar in volatility, shape, density and number concentration, albeit with differences in size, total mass and chemical composition. Particles from marijuana smoke are on average 29% larger in mobility diameter than particles from tobacco smoke and contain 3.4× more total mass. New measurements of semi-volatile fractions determine over 97% of the mass and volume of the particles from either smoke source are comprised of semi-volatile compounds. For tobacco and marijuana smoke, respectively, 4350 and 2575 different compounds are detected, of which, 670 and 536 (231 in common) are tentatively identified, and of these, 173 and 110 different compounds (69 in common) are known to cause negative health effects through carcinogenic, mutagenic, teratogenic, or other toxic mechanisms. This study demonstrates striking similarities between marijuana and tobacco smoke in terms of their physical and chemical properties.


Subject(s)
Cannabis/chemistry , Nicotiana/chemistry , Smoke/analysis , Gas Chromatography-Mass Spectrometry , Volatilization
15.
Nanoscale ; 12(8): 5196-5208, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32073024

ABSTRACT

In this work we show for the first time that a continuous plasma process can synthesize materials from bulk industrial powders to produce hierarchical structures for energy storage applications. The plasma production process's unique advantages are that it is fast, inexpensive, and scalable due to its high energy density that enables low-cost precursors. The synthesized hierarchical material is comprised of iron oxide and aluminum oxide aggregate particles and carbon nanotubes grown in situ from the iron particles. New aerosol-based methods were used for the first time on a battery material to characterize aggregate and primary particle morphologies, while showing good agreement with observations from TEM measurements. As an anode for lithium ion batteries, a reversible capacity of 870 mA h g-1 based on metal oxide mass was observed and the material showed good recovery from high rate cycling. The high rate of material synthesis (∼10 s residence time) enables this plasma hierarchical material synthesis platform to be optimized as a means for energetic material production for the global energy storage material supply chain.

16.
ACS Sens ; 5(2): 447-453, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31922393

ABSTRACT

Low-cost methods for measuring airborne microparticles and nanoparticles (aerosols) have remained elusive despite the increasing concern of health impacts from ambient, urban, and indoor sources. While bipolar ion sources are common in smoke alarms, this work is the first to exploit the mean charge on an aerosol resulting from a bipolar charge equilibrium and establish experimentally its correlation to properties of the aerosol particle size distribution. The net current produced from this mean particle charge is demonstrated to be linearly proportional to the product of the mean particle diameter and total number concentration (i ∼ Nd̅) for two bipolar ion sources (85Kr and 241Am). This conclusion is supported by simple equations derived from well-established bipolar charging theory. The theory predicts that the mean charge on the aerosol particles reaches an equilibrium, which, importantly, is independent of the concentration of charging ions. Furthermore, in situ measurements of a roadside aerosol demonstrate that the sensing method yields results in good agreement (R2 = 0.979) with existing portable and laboratory-grade aerosol instruments. The simplicity, stability, and cost of the bipolar ion source overcome challenges of other portable sensors, increasing the feasibility of widespread sensor deployment to monitor ultrafine particle characteristics, which are relevant to lung deposition and by extension, human health.


Subject(s)
Aerosols/chemistry , Environmental Monitoring/methods , Particulate Matter/chemistry , Humans
17.
ACS Nano ; 14(1): 698-707, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31834775

ABSTRACT

The development of better Li-ion battery (LIB) electrodes requires an orchestrated effort to improve the active materials as well as the electron and ion transport in the electrode. In this paper, iron silicide is studied as an anode material for LIBs because of its higher conductivity and lower volume expansion compared to pure Si particles. In addition, carbon nanotubes (CNTs) can be synthesized from the surface of iron-silicides using a continuous flow coating process where precursors are first spray dried into micrometer-scale secondary particles and are then flown through a chemical vapor deposition (CVD) reactor. Some CNTs are formed inside the secondary particles, which are important for short-range electrical transport and good utilization of the active material. Surface-bound CNTs on the secondary particles may help establish a long-range conductivity. We also observed that these spherical secondary particles allow for better electrode coating quality, cyclability, and rate performance than unstructured materials with the same composition. The developed electrodes retain a gravimetric capacity of 1150 mAh/g over 300 cycles at 1A/g as well as a 43% capacity retention at a rate of 5 C. Further, blended electrodes with graphite delivered a 539 mAh/g with high electrode density (∼1.6 g/cm3) and areal capacity (∼3.5 mAh/cm2) with stable cycling performance.

18.
Small ; 15(27): e1900520, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31120182

ABSTRACT

The agglomeration and self-assembly of gas-phase 1D materials in anthropogenic and natural systems dictate their resulting nanoscale morphology, multiscale hierarchy, and ultimate macroscale properties. Brownian motion induces collisions, upon which 1D materials often restructure to form bundles and can lead to aerogels. Herein, the first results of collision rates for 1D nanomaterials undergoing thermal transport are presented. The Langevin dynamic simulations of nanotube rotation and translation demonstrate that the collision kernels for rigid nanotubes or nanorods are ≈10 times greater than spherical systems. Resulting reduced order equations allow straightforward calculation of the physical parameters to determine the collision kernel for straight and curved 1D materials from 102 to 106 nm length. The collision kernels of curved 1D structures increase ≈1.3 times for long (>102 nm), and ≈5 times for short (≈102 nm) relative to rigid materials. Applications of collision frequencies allow the first kinetic analysis of aerogel self-assembly from gas-phase carbon nanotubes (CNTs). The timescales for CNT collision and bundle formation (0.3-42 s) agree with empirical residence times in CNT reactors (3-15 s). These results provide insights into the CNT length, number, and timescales required for aerogel formation, which bolsters our understanding of mass-produced 1D aerogel materials.

19.
Nanotechnology ; 29(36): 365708, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-29916810

ABSTRACT

Some assemblies of nanomaterials, like carbon nanotube (CNT) sheet or film, always show outstanding and anisotropic thermal properties. However, there is still a lack of comprehensive thermal conductivity (κ) characterizations on CNT sheets, as well as a lack of estimations of their true contributions on thermal enhancement of polymer composites when used as additives. Always, these characterizations were hindered by the low heat capacity, anisotropic thermal properties or low electrical conductivity of assemblies and their nanocomposites. The transient κ measurement and calculations were also hampered by accurate determination of parameters, like specific heat capacity, density and cross-section, which could be difficult and controversial for nanomaterials, like CNT sheets. Here, to measure anisotropic κ of CNT sheets directly with high fidelity, we modified the conventional steady-state method by measuring under vacuum and by infrared camera, and then comparing temperature profiles on both reference standard material and a CNT sheet sample. The highly anisotropic thermal conductivities of CNT sheets were characterized comprehensively, with κ/ρ in alignment direction as ∼95 mW m2 K-1 kg-1. Furthermore, by comparing the measured thermal properties of different CNT-epoxy resin composites, the heat conduction pathway created by the CNT hierarchical network was demonstrated to remain intact after the in situ polymerization and curing process. The reliable and direct κ measurement rituals used here, dedicated to nanomaterials, will be also essential to assist in assemblies' application to heat dissipation and composite thermal enhancement.

20.
Nanoscale ; 10(16): 7780-7791, 2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29662980

ABSTRACT

Hybrid structures consisting of functional materials enhanced by carbon nanotubes (CNTs) have potential for a variety of high impact applications, as shown by the impressive progress in sensing and mechanical applications enabled by CNT-enhanced materials. The hierarchical organisation of CNTs with other materials is key to the design of macroscale devices benefiting from the unique properties of individual CNTs, provided CNT density, morphology and binding with other materials are optimized. In this paper, we provide an analysis of a continuous aerosol process to create a hybrid hierarchical sea urchin structure with CNTs organized around a functional metal oxide core. We propose a new mechanism for the growth of these carbon nanotube sea urchins (CNTSU) and give new insight into their chemical composition. To corroborate the new mechanism, we examine the influence of CNT growth conditions on CNTSU morphology and demonstrate a new in-line characterisation technique to continuously monitor aerosol CNT growth during synthesis, which enables industrial-scale production optimization. Based upon the new formation mechanism we describe the first substrate-based chemical vapour deposition growth of CNTSUs which increases CNT length and improves G to D ratio, which also allows for the formation of CNTSU carpets with unique structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...