Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 29(6): 1856-1869, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37942573

ABSTRACT

Despite the advantageous resolution of electron tomography (ET), reconstruction of three-dimensional (3D) images from multiple two-dimensional (2D) projections presents several challenges, including small signal-to-noise ratios, and a limited projection range. This study evaluates the capabilities of ET for thin sections of shale, a complex nanoporous medium. A numerical phantom with 1.24 nm pixel size is constructed based on the tomographic reconstruction of a Barnett shale. A dataset of 2D projection images is numerically generated from the 3D phantom and studied over a range of conditions. First, common reconstruction techniques are used to reconstruct the shale structure. The reconstruction uncertainty is quantified by comparing overall values of storage and transport metrics, as well as the misclassification of pore voxels compared to the phantom. We then select the most robust reconstruction technique and we vary the acquisition conditions to quantify the effect of artifacts. We find a strong agreement for large pores over the different acquisition workflows, while a wider variability exists for nanometer-scale features. The limited projection range and reconstruction are identified as the main experimental bottlenecks, thereby suggesting that sample thinning, advanced holders, and advanced reconstruction algorithms offer opportunities for improvement.

2.
Combust Flame ; 200: 142-154, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30532316

ABSTRACT

Quantitative X-ray computed tomography (XCT) diagnostics for reacting flows are developed and demonstrated in application to premixed flames in open and optically inaccessible geometries. A laboratory X-ray scanner is employed to investigate methane/air flames that were diluted with krypton as an inert radiodense tracer gas. Effects of acquisition rate and tracer gas concentration on the signal-to-noise ratio are examined. It is shown that statistically converged three-dimensional attenuation measurements can be obtained with limited impact from the tracer gas and within an acceptable acquisition time. Specific aspects of the tomographic reconstruction and the experimental procedure are examined, with particular emphasis on the quantification of experimental uncertainties. A method is developed to determine density and temperature from the X-ray attenuation measurements. These experiments are complemented by one- and multi-dimensional calculations to quantify the influence of krypton on the flame behavior. To demonstrate the merit of XCT for optically inaccessible flames, measurements of a complex flame geometry in a tubular confinement are performed. The use of a coflow to provide a uniform tracer-gas concentration is shown to improve the quantitative temperature evaluation. These measurements demonstrate the viability of XCT for flame-structure analysis and multi-dimensional temperature measurements using laboratory X-ray systems. Further opportunities for improving this diagnostic are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...