Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38083006

ABSTRACT

Measuring cardiorespiratory parameters in sleep, using non-contact sensors and the Ballistocardiography technique has received much attention due to the low-cost, unobtrusive, and non-invasive method. Designing a user-friendly, simple-to-use, and easy-to-deployment preserving less error-prone remains open and challenging due to the complex morphology of the signal. In this work, using four forcesensitive resistor sensors, we conducted a study by designing four distributions of sensors, in order to simplify the complexity of the system by identifying the region of interest for heartbeat and respiration measurement. The sensors are deployed under the mattress and attached to the bed frame without any interference with the subjects. The four distributions are combined in two linear horizontal, one linear vertical, and one square, covering the influencing region in cardiorespiratory activities. We recruited 4 subjects and acquired data in four regular sleeping positions, each for a duration of 80 seconds. The signal processing was performed using discrete wavelet transform bior 3.9 and smooth level of 4 as well as bandpass filtering. The results indicate that we have achieved the mean absolute error of 2.35 and 4.34 for respiration and heartbeat, respectively. The results recommend the efficiency of a triangleshaped structure of three sensors for measuring heartbeat and respiration parameters in all four regular sleeping positions.


Subject(s)
Ballistocardiography , Sleep , Humans , Polysomnography/methods , Signal Processing, Computer-Assisted , Respiration
2.
Sensors (Basel) ; 23(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37299762

ABSTRACT

Sleep is essential to physical and mental health. However, the traditional approach to sleep analysis-polysomnography (PSG)-is intrusive and expensive. Therefore, there is great interest in the development of non-contact, non-invasive, and non-intrusive sleep monitoring systems and technologies that can reliably and accurately measure cardiorespiratory parameters with minimal impact on the patient. This has led to the development of other relevant approaches, which are characterised, for example, by the fact that they allow greater freedom of movement and do not require direct contact with the body, i.e., they are non-contact. This systematic review discusses the relevant methods and technologies for non-contact monitoring of cardiorespiratory activity during sleep. Taking into account the current state of the art in non-intrusive technologies, we can identify the methods of non-intrusive monitoring of cardiac and respiratory activity, the technologies and types of sensors used, and the possible physiological parameters available for analysis. To do this, we conducted a literature review and summarised current research on the use of non-contact technologies for non-intrusive monitoring of cardiac and respiratory activity. The inclusion and exclusion criteria for the selection of publications were established prior to the start of the search. Publications were assessed using one main question and several specific questions. We obtained 3774 unique articles from four literature databases (Web of Science, IEEE Xplore, PubMed, and Scopus) and checked them for relevance, resulting in 54 articles that were analysed in a structured way using terminology. The result was 15 different types of sensors and devices (e.g., radar, temperature sensors, motion sensors, cameras) that can be installed in hospital wards and departments or in the environment. The ability to detect heart rate, respiratory rate, and sleep disorders such as apnoea was among the characteristics examined to investigate the overall effectiveness of the systems and technologies considered for cardiorespiratory monitoring. In addition, the advantages and disadvantages of the considered systems and technologies were identified by answering the identified research questions. The results obtained allow us to determine the current trends and the vector of development of medical technologies in sleep medicine for future researchers and research.


Subject(s)
Respiratory Rate , Sleep , Humans , Polysomnography
3.
Sensors (Basel) ; 23(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37300078

ABSTRACT

Sleep is extremely important for physical and mental health. Although polysomnography is an established approach in sleep analysis, it is quite intrusive and expensive. Consequently, developing a non-invasive and non-intrusive home sleep monitoring system with minimal influence on patients, that can reliably and accurately measure cardiorespiratory parameters, is of great interest. The aim of this study is to validate a non-invasive and unobtrusive cardiorespiratory parameter monitoring system based on an accelerometer sensor. This system includes a special holder to install the system under the bed mattress. The additional aim is to determine the optimum relative system position (in relation to the subject) at which the most accurate and precise values of measured parameters could be achieved. The data were collected from 23 subjects (13 males and 10 females). The obtained ballistocardiogram signal was sequentially processed using a sixth-order Butterworth bandpass filter and a moving average filter. As a result, an average error (compared to reference values) of 2.24 beats per minute for heart rate and 1.52 breaths per minute for respiratory rate was achieved, regardless of the subject's sleep position. For males and females, the errors were 2.28 bpm and 2.19 bpm for heart rate and 1.41 rpm and 1.30 rpm for respiratory rate. We determined that placing the sensor and system at chest level is the preferred configuration for cardiorespiratory measurement. Further studies of the system's performance in larger groups of subjects are required, despite the promising results of the current tests in healthy subjects.


Subject(s)
Signal Processing, Computer-Assisted , Sleep , Male , Female , Humans , Sleep/physiology , Polysomnography , Respiratory Rate , Heart Rate/physiology , Accelerometry
4.
Sensors (Basel) ; 23(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37112315

ABSTRACT

Sleep disorders can impact daily life, affecting physical, emotional, and cognitive well-being. Due to the time-consuming, highly obtrusive, and expensive nature of using the standard approaches such as polysomnography, it is of great interest to develop a noninvasive and unobtrusive in-home sleep monitoring system that can reliably and accurately measure cardiorespiratory parameters while causing minimal discomfort to the user's sleep. We developed a low-cost Out of Center Sleep Testing (OCST) system with low complexity to measure cardiorespiratory parameters. We tested and validated two force-sensitive resistor strip sensors under the bed mattress covering the thoracic and abdominal regions. Twenty subjects were recruited, including 12 males and 8 females. The ballistocardiogram signal was processed using the 4th smooth level of the discrete wavelet transform and the 2nd order of the Butterworth bandpass filter to measure the heart rate and respiration rate, respectively. We reached a total error (concerning the reference sensors) of 3.24 beats per minute and 2.32 rates for heart rate and respiration rate, respectively. For males and females, heart rate errors were 3.47 and 2.68, and respiration rate errors were 2.32 and 2.33, respectively. We developed and verified the reliability and applicability of the system. It showed a minor dependency on sleeping positions, one of the major cumbersome sleep measurements. We identified the sensor under the thoracic region as the optimal configuration for cardiorespiratory measurement. Although testing the system with healthy subjects and regular patterns of cardiorespiratory parameters showed promising results, further investigation is required with the bandwidth frequency and validation of the system with larger groups of subjects, including patients.


Subject(s)
Respiratory Rate , Sleep , Male , Female , Humans , Reproducibility of Results , Sleep/physiology , Polysomnography/methods , Wavelet Analysis , Heart Rate/physiology , Respiration
5.
Oncotarget ; 8(18): 29657-29667, 2017 May 02.
Article in English | MEDLINE | ID: mdl-27302920

ABSTRACT

Targeted cancer therapy aims to disrupt aberrant cellular signalling pathways. Biomarkers are surrogates of pathway state, but there is limited success in translating candidate biomarkers to clinical practice due to the intrinsic complexity of pathway networks. Systems biology approaches afford better understanding of complex, dynamical interactions in signalling pathways targeted by anticancer drugs. However, adoption of dynamical modelling by clinicians and biologists is impeded by model inaccessibility. Drawing on computer games technology, we present a novel visualization toolkit, SiViT, that converts systems biology models of cancer cell signalling into interactive simulations that can be used without specialist computational expertise. SiViT allows clinicians and biologists to directly introduce for example loss of function mutations and specific inhibitors. SiViT animates the effects of these introductions on pathway dynamics, suggesting further experiments and assessing candidate biomarker effectiveness. In a systems biology model of Her2 signalling we experimentally validated predictions using SiViT, revealing the dynamics of biomarkers of drug resistance and highlighting the role of pathway crosstalk. No model is ever complete: the iteration of real data and simulation facilitates continued evolution of more accurate, useful models. SiViT will make accessible libraries of models to support preclinical research, combinatorial strategy design and biomarker discovery.


Subject(s)
Biomarkers , Combined Modality Therapy , Models, Biological , Signal Transduction , Systems Biology/methods , Algorithms , Animals , Computer Simulation , Databases, Factual , Humans , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...