Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
2.
Neuropsychopharmacology ; 45(11): 1834-1841, 2020 10.
Article in English | MEDLINE | ID: mdl-32521537

ABSTRACT

Amygdala-prefrontal cortex (PFC) functional impairments have been linked to emotion dysregulation and aggression in borderline personality disorder (BPD). Fatty acid amide hydrolase (FAAH), the major catabolic enzyme for the endocannabinoid anandamide, has been proposed as a key regulator of the amygdala-PFC circuit that subserves emotion regulation. We tested the hypothesis that FAAH levels measured with [11C]CURB positron emission tomography in amygdala and PFC would be elevated in BPD and would relate to hostility and aggression. Twenty BPD patients and 20 healthy controls underwent FAAH genotyping (rs324420) and scanning with [11C]CURB. BPD patients were medication-free and were not experiencing a current major depressive episode. Regional differences in [11C]CURB binding were assessed using multivariate analysis of covariance with PFC and amygdala [11C]CURB binding as dependent variables, diagnosis as a fixed factor, and sex and genotype as covariates. [11C]CURB binding was marginally elevated across the PFC and amygdala in BPD (p = 0.08). In a priori selected PFC, but not amygdala, [11C]CURB binding was significantly higher in BPD (11.0%, p = 0.035 versus 10.6%, p = 0.29). PFC and amygdala [11C]CURB binding was positively correlated with measures of hostility in BPD (r > 0.4; p < 0.04). This study is the first to provide preliminary evidence of elevated PFC FAAH binding in any psychiatric condition. Findings are consistent with the model that lower endocannabinoid tone could perturb PFC circuitry that regulates emotion and aggression. Replication of these findings could encourage testing of FAAH inhibitors as innovative treatments for BPD.


Subject(s)
Borderline Personality Disorder , Depressive Disorder, Major , Amidohydrolases , Borderline Personality Disorder/diagnostic imaging , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography , Prefrontal Cortex/diagnostic imaging
3.
Transl Psychiatry ; 6: e740, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26905412

ABSTRACT

Dysregulation of the stress response system is a potential etiological factor in the development of and relapse to multiple neuropsychiatric disorders. Previously we reported that repeated intermittent d-amphetamine administration can lead to progressively greater dopamine release, thereby providing evidence of drug-induced neurochemical sensitization. Here, we test the hypothesis that repeated exposure to d-amphetamine increases dopaminergic responses to stress; that is, produces cross-sensitization. Using positron emission tomography, we measured in 17 healthy male volunteers (mean ± s.d. = 22.1 ± 3.4 years) [(11)C]raclopride binding responses to a validated psychosocial stress task before and 2 weeks after a regimen of repeated d-amphetamine (3 × 0.3 mg kg(-1), by mouth; n = 8) or placebo (3 × lactose, by mouth; n = 9). Mood and physiological measurements were recorded throughout each session. Before the d-amphetamine regimen, exposure to the stress task increased behavioral and physiological indices of stress (anxiety, heart rate, cortisol, all P ⩽ 0.05). Following the d-amphetamine regimen, the stress-induced cortisol responses were augmented (P < 0.04), and voxel-based analyses showed larger stress-induced decreases in [(11)C]raclopride non-displaceable binding potential across the striatum. In the placebo group, re-exposure to stress led to smaller clusters of decreased [(11)C]raclopride binding, primarily in the sensorimotor striatum (P < 0.05). Together, this study provides evidence for drug × stress cross-sensitization; moreover, random exposure to stimulants and/or stress cumulatively, while enhancing dopamine release in striatal areas, may contribute to a lowered set point for psychopathologies in which altered dopamine neurotransmission is invoked.


Subject(s)
Brain/drug effects , Brain/metabolism , Dextroamphetamine/pharmacology , Dopamine/metabolism , Stress, Psychological/metabolism , Adult , Central Nervous System Stimulants/pharmacology , Dopamine Agents/metabolism , Dopamine Antagonists/administration & dosage , Humans , Male , Positron-Emission Tomography , Raclopride/administration & dosage , Reference Values , Young Adult
4.
Mol Psychiatry ; 19(12): 1305-13, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24322203

ABSTRACT

Drug addiction has been associated with deficits in mesostriatal dopamine (DA) function, but whether this state extends to behavioral addictions such as pathological gambling (PG) is unclear. Here we used positron emission tomography and the D3 receptor-preferring radioligand [(11)C]-(+)-PHNO during a dual-scan protocol to investigate DA release in response to oral amphetamine in pathological gamblers (n=12) and healthy controls (n=11). In contrast with human neuroimaging findings in drug addiction, we report the first evidence that PG is associated with greater DA release in dorsal striatum (54-63% greater [(11)C]-(+)-PHNO displacement) than controls. Importantly, dopaminergic response to amphetamine in gamblers was positively predicted by D3 receptor levels (measured in substantia nigra), and related to gambling severity, allowing for construction of a mechanistic model that could help explain DA contributions to PG. Our results are consistent with a hyperdopaminergic state in PG, and support the hypothesis that dopaminergic sensitization involving D3-related mechanisms might contribute to the pathophysiology of behavioral addictions.


Subject(s)
Amphetamine/pharmacology , Brain/drug effects , Brain/metabolism , Dopamine Agents/pharmacology , Dopamine/metabolism , Gambling/metabolism , Adult , Brain/diagnostic imaging , Dopamine Agonists , Gambling/diagnostic imaging , Humans , Male , Models, Neurological , Oxazines , Positron-Emission Tomography , Radiopharmaceuticals , Receptors, Dopamine D3/metabolism , Severity of Illness Index
5.
Eur J Neurol ; 14(5): 523-8, 2007 May.
Article in English | MEDLINE | ID: mdl-17437611

ABSTRACT

Early post-mortem data suggest that damage to brain serotonin neurones might play a role in some features (e.g., depression) of Parkinson's disease (PD). However, it is not known whether such damage is a typical characteristic of living patients with PD or whether the changes are regionally widespread. To address this question we measured, by positron emission tomography imaging, levels of the brain serotonin transporter (SERT), a marker for serotonin neurones, as inferred from binding of [11C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile (DASB), a second generation SERT radioligand, in subcortical and cerebral cortical brain areas of clinically advanced non-depressed (confirmed by structured psychiatric interview) patients with PD. SERT binding levels in PD were lower than those in controls in all examined brain areas, with the changes statistically significant in orbitofrontal cortex (-22%), caudate (-30%), putamen (-26%), and midbrain (-29%). However, only a slight non-significant reduction (-7%) was observed in dorsolateral pre-frontal cortex, an area implicated in major depression. Our imaging data suggests that a modest, regionally widespread loss of brain serotonergic innervation might be a common feature of advanced PD. Further investigation will be required to establish whether SERT binding is more or less decreased in those patients with PD who also have major depressive disorder.


Subject(s)
Brain Chemistry/physiology , Brain/metabolism , Parkinson Disease/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin/metabolism , Aged , Benzylamines , Binding, Competitive/physiology , Biomarkers/analysis , Biomarkers/metabolism , Brain/diagnostic imaging , Brain/physiopathology , Carbon Radioisotopes , Depressive Disorder/metabolism , Depressive Disorder/physiopathology , Down-Regulation/physiology , Female , Humans , Male , Middle Aged , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Positron-Emission Tomography , Predictive Value of Tests , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL