Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Viruses ; 15(8)2023 07 25.
Article in English | MEDLINE | ID: mdl-37631963

ABSTRACT

The Zika virus (ZIKV) is a widespread mosquito-borne pathogen. Phylogenetically, two lineages of ZIKV are distinguished: African and Asian-American. The latter became the cause of the 2015-2016 pandemic, with severe consequences for newborns. In West African countries, the African lineage was found, but there is evidence of the emergence of the Asian-American lineage in Cape Verde and Angola. This highlights the need to not only monitor ZIKV but also sequence the isolates. In this article, we present a case report of Zika fever in a pregnant woman from Guinea identified in 2018. Viral RNA was detected through qRT-PCR in a serum sample. In addition, the seroconversion of anti-Zika IgM and IgG antibodies was detected in repeated blood samples. Subsequently, the virus was isolated from the C6/36 cell line. The detected ZIKV belonged to the African lineage, the Nigerian sublineage. The strains with the closest sequences were isolated from mosquitoes in Senegal in 2011 and 2015. In addition, we conducted the serological screening of 116 blood samples collected from patients presenting to the hospital of Faranah with fevers during the period 2018-2021. As a result, it was found that IgM-positive patients were identified each year and that the seroprevalence varied between 5.6% and 17.1%.


Subject(s)
Culicidae , Zika Virus Infection , Zika Virus , Infant, Newborn , Animals , Female , Pregnancy , Humans , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology , Zika Virus/genetics , Guinea/epidemiology , Seroepidemiologic Studies , Immunoglobulin M
2.
Vet Parasitol Reg Stud Reports ; 24: 100564, 2021 04.
Article in English | MEDLINE | ID: mdl-34024380

ABSTRACT

Intraerythrocytic protozoan parasites from the genera Babesia and Theileria may infect a wide range of animals and humans. The purpose of this study was to detect the 18S ribosomal RNA gene of Babesia spp. and Theileria spp. in ticks collected from household cows in the Republic of Guinea from 2017 to 2018 by PCR and then genotype the gene fragments by sequencing. A total of 907 ticks from 319 cows were collected in seven prefectures of Guinea (Boke, Faranah, Kankan, Kindia, Labe, Mamou and N'Zerekore). The following tick species on cattle were identified: Amblyomma variegatum (44.2%), Rhipicephalus decoloratus (34.7%), Rh. annulatus (10.3%), Rh. geigyi (7.3%) Hyalomma truncatum (2.4%), Rh. senegalensis (0.8%) and Haemaphysalis leachi (0.6%). Genetic markers for piroplasms were found in Am. variegatum, Rh. decoloratus, Rh. annulatus, and Rh. geigyi ticks, and the total infection rate for these ticks was 4.2%. The highest infection rate was found in Rh. annulatus ticks (10.9%). The piroplasms were genotyped as Babesia caballi, Theileria mutans and Theileria velifera by phylogenetic analysis of the 1150 bp 18S ribosomal RNA gene fragments. These pathogens were discovered in practically all studied prefectures in Guinea except for Mamou Prefecture. We propose that these ixodid ticks might play a major role in the transmission of piroplasm infections in domestic animals in Guinea.


Subject(s)
Babesia , Cattle Diseases , Ixodidae , Rhipicephalus , Theileria , Tick Infestations , Animals , Babesia/genetics , Cattle , Cattle Diseases/parasitology , Female , Guinea , Ixodidae/parasitology , Phylogeny , Theileria/genetics , Tick Infestations/veterinary
3.
Parasitol Res ; 120(5): 1563-1570, 2021 May.
Article in English | MEDLINE | ID: mdl-33788020

ABSTRACT

Rhipicephalus microplus is an ixodid tick with a pantropical distribution that represents a serious threat to livestock. West Africa was free of this tick until 2007, when its introduction into Benin was reported. Shortly thereafter, further invasion of this tick species into other West African countries was identified. In this paper, we describe the first detection of R. microplus in Guinea and list the vector-borne haemoparasites that were detected in the invading and indigenous Boophilus species. In 2018, we conducted a small-scale survey of ticks infesting cattle in three administrative regions of Guinea: N`Zerekore, Faranah, and Kankan. The tick species were identified by examining their morphological characteristics and by sequencing their COI gene and ITS-2 gene fragments. R. microplus was found in each studied region. In the ticks, we found the DNA of Babesia bigemina, Anaplasma marginale, Anaplasma platys, and Ehrlichia sp. The results of this study indicate that R. microplus was introduced into Guinea in association with cows from Mali and/or the Ivory Coast.


Subject(s)
Anaplasma marginale/isolation & purification , Anaplasma/isolation & purification , Babesia/isolation & purification , Ehrlichia/isolation & purification , Rhipicephalus/microbiology , Rhipicephalus/parasitology , Anaplasma/genetics , Anaplasma marginale/genetics , Animals , Babesia/genetics , Benin , Cattle , Cattle Diseases/parasitology , Cote d'Ivoire , Ehrlichia/genetics , Female , Guinea , Livestock/parasitology , Tick Infestations/veterinary
4.
Acta Trop ; 214: 105790, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33309594

ABSTRACT

Ngari virus is a mosquito-borne virus belonging to the genus Orthobunyavirus (Peribunyaviridae family). This virus is pathogenic to humans and causes severe illness. Ngari virus is present in several African countries, including Madagascar. Here, we report the detection of Ngari virus in ixodid ticks collected from cows in Guinea. A tick survey was conducted in March-November of 2018 in six regions of Guinea. The sample comprised 710 pools, with a total of 2067 ticks belonging to five species collected from 197 cows. At the initial stage, we screened a subsample of tick pools of vector-borne viruses with a multiplex genus-specific primer panel. In the second stage of the study, we narrowed the search and screened all the samples by qPCR for the detection of Ngari virus. All positive samples were sequenced with primers flanking Ngari virus-specific fragments on the S and M segments. We found Ngari virus in 12 pools that were formed from engorged ticks collected from livestock in three villages of the Kindia and Kankan regions. Sequencing of the S and M segments confirmed that the detected viruses belong to Ngari virus, and the viruses were most similar to the strain Adrar, which was isolated in Mauritania. We detected viral RNA in ticks of the following species: Amblyomma variegatum, Rhipicephalus geigyi, and Rh. (Boophilus) spp. There is no evidence that ixodid ticks are competent vectors of the Ngari virus. Most likely, the ticks obtained the virus through blood from an infected host. The study of engorged ticks can be recommended as a simpler approach for the wide screening of the Ngari virus and subsequent testing of cattle and mosquitos in those locations where the PCR-positive ticks were collected.


Subject(s)
Bunyaviridae Infections/veterinary , Cattle Diseases/epidemiology , Ixodidae/virology , Orthobunyavirus/isolation & purification , Tick Infestations/veterinary , Animals , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/transmission , Cattle , Cattle Diseases/parasitology , Cattle Diseases/transmission , Cattle Diseases/virology , Female , Guinea/epidemiology , Humans , Orthobunyavirus/genetics , Tick Infestations/epidemiology , Tick Infestations/parasitology
5.
J Venom Anim Toxins Incl Trop Dis ; 19(1): 6, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23849079

ABSTRACT

BACKGROUND: In Guinea Elapids are responsible for 20% of envenomations. The associated case fatality rate (CFR) ranged 15-27%, irrespective of treatment. RESULTS: We studied 77 neurotoxic envenomations divided in 3 groups: a set of patients that received only traditional or symptomatic treatments, and two other groups that received either 2 or 4 initial vials of Antivipmyn® Africa renewed as necessary. CFR was 27.3%, 15.4% and 17.6%, respectively. Although antivenom treatment was likely to reduce CFR, it didn't seem to have an obvious clinical benefit for the patients, suggesting a low treatment efficacy. Mean delay to treatment or clinical stages were not significantly different between the patients who recovered and the patients who died, or between groups. Interpretation of these results is complicated by the lack of systematic studies under comparable conditions. Of particular importance is the absence of assisted ventilation, available to patients in all the other clinical studies of neurotoxic envenomation. CONCLUSION: The apparent lack of clinical benefit may have several causes. The hypothesis of a limited therapeutic window, i.e. an insufficient formation of antigen-antibody complexes once toxins are bound to their targets and/or distributed beyond the reach of antivenom, should be explored.

6.
Article in English | LILACS, VETINDEX | ID: biblio-1484525

ABSTRACT

In Guinea Elapids are responsible for 20% of envenomations. The associated case fatality rate (CFR) ranged 15-27%, irrespective of treatment. Results We studied 77 neurotoxic envenomations divided in 3 groups: a set of patients that received only traditional or symptomatic treatments, and two other groups that received either 2 or 4 initial vials of Antivipmyn® Africa renewed as necessary. CFR was 27.3%, 15.4% and 17.6%, respectively. Although antivenom treatment was likely to reduce CFR, it didn’t seem to have an obvious clinical benefit for the patients, suggesting a low treatment efficacy. Mean delay to treatment or clinical stages were not significantly different between the patients who recovered and the patients who died, or between groups. Interpretation of these results is complicated by the lack of systematic studies under comparable conditions. Of particular importance is the absence of assisted ventilation, available to patients in all the other clinical studies of neurotoxic envenomation. Conclusion The apparent lack of clinical benefit may have several causes. The hypothesis of a limited therapeutic window, i.e. an insufficient formation of antigen-antibody complexes once toxins are bound to their targets and/or distributed beyond the reach of antivenom, should be explored.


Subject(s)
Animals , Antivenins/analysis , Poisoning/complications , Neurotoxins , Snake Venoms/analysis , Snakes
7.
Article in English | LILACS | ID: lil-686620

ABSTRACT

Background In Guinea Elapids are responsible for 20% of envenomations. The associated case fatality rate (CFR) ranged 15-27%, irrespective of treatment. Results We studied 77 neurotoxic envenomations divided in 3 groups: a set of patients that received only traditional or symptomatic treatments, and two other groups that received either 2 or 4 initial vials of Antivipmyn® Africa renewed as necessary. CFR was 27.3%, 15.4% and 17.6%, respectively. Although antivenom treatment was likely to reduce CFR, it didn’t seem to have an obvious clinical benefit for the patients, suggesting a low treatment efficacy. Mean delay to treatment or clinical stages were not significantly different between the patients who recovered and the patients who died, or between groups. Interpretation of these results is complicated by the lack of systematic studies under comparable conditions. Of particular importance is the absence of assisted ventilation, available to patients in all the other clinical studies of neurotoxic envenomation. Conclusion The apparent lack of clinical benefit may have several causes. The hypothesis of a limited therapeutic window, i.e. an insufficient formation of antigen-antibody complexes once toxins are bound to their targets and/or distributed beyond the reach of antivenom, should be explored. .


Subject(s)
Humans , Male , Female , Antivenins/therapeutic use , Elapid Venoms/toxicity , Elapidae , Antivenins/adverse effects , Guinea/epidemiology , Neurotoxins , Poisoning/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...