Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Cell Chem Biol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729162

ABSTRACT

The ability to optically stimulate and inhibit neurons has revolutionized neuroscience research. Here, we present a direct, potent, user-friendly chemical approach for optically silencing neurons. We have rendered saxitoxin (STX), a naturally occurring paralytic agent, transiently inert through chemical protection with a previously undisclosed nitrobenzyl-derived photocleavable group. Exposing the caged toxin, STX-bpc, to a brief (5 ms) pulse of light effects rapid release of a potent STX derivative and transient, spatially precise blockade of voltage-gated sodium channels (NaVs). We demonstrate the efficacy of STX-bpc for parametrically manipulating action potentials in mammalian neurons and brain slice. Additionally, we show the effectiveness of this reagent for silencing neural activity by dissecting sensory-evoked swimming in larval zebrafish. Photo-uncaging of STX-bpc is a straightforward method for non-invasive, reversible, spatiotemporally precise neural silencing without the need for genetic access, thus removing barriers for comparative research.

2.
Elife ; 122024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345841

ABSTRACT

CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different tissues. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating among closely related homologs has been a long-standing mystery, in part because few CLC channel structures are available. Here, we report cryoEM structures of human CLC-2 at 2.46 - 2.76 Å, in the presence and absence of the selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl--permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct conformations involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl--permeation pathway. This peptide is highly conserved among species variants of CLC-2 but is not present in other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a "ball-and-chain" gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl--permeation pathway.


Subject(s)
CLC-2 Chloride Channels , Animals , Humans , Biophysical Phenomena , CLC-2 Chloride Channels/chemistry , Electrophysiology , Mammals/metabolism , Peptides/metabolism , Cryoelectron Microscopy
3.
STAR Protoc ; 5(1): 102792, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38133955

ABSTRACT

Anuran saxiphilins (Sxphs) are "toxin sponge" proteins thought to prevent the lethal effects of small-molecule neurotoxins through sequestration. Here, we present a protocol for the expression, purification, and characterization of Sxphs. We describe steps for using thermofluor, fluorescence polarization, and isothermal titration calorimetry assays that probe Sxph:saxitoxin interactions using a range of sample quantities. These assays are generalizable and can be used for other paralytic shellfish poisoning toxin-binding proteins. For complete details on the use and execution of this protocol, please refer to Chen et al. (2022).1.


Subject(s)
Neurotoxins , Saxitoxin , Saxitoxin/metabolism , Calorimetry , Fluorescence Polarization
4.
Chembiochem ; 24(22): e202300493, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37746898

ABSTRACT

Voltage-gated sodium ion channels (NaV s) are integral membrane protein complexes responsible for electrical signal conduction in excitable cells. Methods that enable selective labeling of NaV s hold potential value for understanding how channel regulation and post-translational modification are influenced during development and in response to diseases and disorders of the nervous system. We have developed chemical reagents patterned after (+)-saxitoxin (STX) - a potent and reversible inhibitor of multiple NaV isoforms - and affixed with a reactive electrophile and either a biotin cofactor, fluorophore, or 'click' functional group for labeling wild-type channels. Our studies reveal enigmatic structural effects of the probes on the potency and efficiency of covalent protein modification. Among the compounds analyzed, a STX-maleimide-coumarin derivative is most effective at irreversibly blocking Na+ conductance when applied to recombinant NaV s and endogenous channels expressed in hippocampal neurons. Mechanistic analysis supports the conclusion that high-affinity toxin binding is a prerequisite for covalent protein modification. Results from these studies are guiding the development of next-generation tool compounds for selective modification of NaV s expressed in the plasma membranes of cells.


Subject(s)
Saxitoxin , Voltage-Gated Sodium Channels , Voltage-Gated Sodium Channels/metabolism , Protein Isoforms/metabolism , Neurons/metabolism
5.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37645939

ABSTRACT

CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different mammalian tissues and cell types. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating mechanisms among closely related CLC homologs has been a long-standing mystery, in part because few CLC channel structures are available, and those that exist exhibit high conformational similarity. Here, we report cryoEM structures of human CLC-2 at 2.46 - 2.76 Å, in the presence and absence of the potent and selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl--permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct apo conformations of CLC-2 involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl--permeation pathway from the intracellular side. This peptide is highly conserved among species variants of CLC-2 but is not present in any other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a "ball-and-chain" gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we show that loss of this short sequence increases the magnitude and decreases the rectification of CLC-2 currents expressed in mammalian cells. Furthermore, we show that with repetitive hyperpolarization WT CLC-2 currents increase in resemblance to the hairpin-deleted CLC-2 currents. These functional results combined with our structural data support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl--permeation pathway.

6.
Public Health ; 213: 147-156, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36413822

ABSTRACT

OBJECTIVES: To date, no meta-analysis has examined the influence of specific intervention characteristics in the overall effectiveness of school-based interventions measured only with accelerometer devices. Thus, the main purpose of this systematic review and meta-analysis was to evaluate the overall and specific variables of the effectiveness of school-based interventions assessed with accelerometer devices among children aged 5-12 years. STUDY DESIGN: A systematic review and meta-analysis to assess the effectiveness of school-based interventions. METHODS: Studies published in English, French and Spanish from five electronic databases between January 2010 and December 2021 were identified. Intervention designs with control group measure that assessed daily moderate-to-vigorous physical activity (MVPA) and sedentary time (ST) with accelerometer devices in children aged 5-12 years were included. PROSPERO ID: CRD42022326859. RESULTS: A total of 24 trials comprising of 19,487 children (51.3% girls) were included. Intervention studies were ineffective for improving daily MVPA (Hedges' g = 0.07, 95% confidence interval [CI] -0.03 to 0.17; I2 = 84.80%) but were effective for reducing ST (g = -0.08, 95% CI -0.12 to -0.03; I2 = 20.94%). Also, subgroup analyses for MVPA revealed that when studies had two intervention components (g = 0.21, 95% CI 0.06-0.36; I2 = 77.67%), and high quality (g = 0.12, 95% CI 0.01-0.22; I2 = 88.30%) they were effective. CONCLUSION: School-based interventions have been effective to reduce children's daily time spent in ST. There is no evidence of overall effectiveness of school-based interventions for enhancing daily MVPA in children. Nevertheless, improving the quality of interventions and interventions with two components are effective to increase students' daily MVPA.


Subject(s)
Exercise , Sedentary Behavior , Child , Humans , Schools , Randomized Controlled Trials as Topic
7.
ACS Med Chem Lett ; 13(11): 1763-1768, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36385936

ABSTRACT

The voltage-gated sodium channel isoform NaV1.7 has drawn widespread interest as a target for non-opioid, investigational new drugs to treat pain. Selectivity over homologous, off-target sodium channel isoforms, which are expressed in peripheral motor neurons, the central nervous system, skeletal muscle and the heart, poses a significant challenge to the development of small molecule inhibitors of NaV1.7. Most inhibitors of NaV1.7 disclosed to date belong to a class of aryl and acyl sulfonamides that preferentially bind to an inactivated conformation of the channel. By taking advantage of a sequence variation unique to primate NaV1.7 in the extracellular pore of the channel, a series of bis-guanidinium analogues of the natural product, saxitoxin, has been identified that are potent against the resting conformation of the channel. A compound of interest, 25, exhibits >600-fold selectivity over off-target sodium channel isoforms and is efficacious in a preclinical model of acute pain.

8.
Proc Natl Acad Sci U S A ; 119(44): e2210114119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279441

ABSTRACT

American bullfrog (Rana castesbeiana) saxiphilin (RcSxph) is a high-affinity "toxin sponge" protein thought to prevent intoxication by saxitoxin (STX), a lethal bis-guanidinium neurotoxin that causes paralytic shellfish poisoning (PSP) by blocking voltage-gated sodium channels (NaVs). How specific RcSxph interactions contribute to STX binding has not been defined and whether other organisms have similar proteins is unclear. Here, we use mutagenesis, ligand binding, and structural studies to define the energetic basis of Sxph:STX recognition. The resultant STX "recognition code" enabled engineering of RcSxph to improve its ability to rescue NaVs from STX and facilitated discovery of 10 new frog and toad Sxphs. Definition of the STX binding code and Sxph family expansion among diverse anurans separated by ∼140 My of evolution provides a molecular basis for understanding the roles of toxin sponge proteins in toxin resistance and for developing novel proteins to sense or neutralize STX and related PSP toxins.


Subject(s)
Neurotoxins , Saxitoxin , Animals , Saxitoxin/genetics , Ligands , Guanidine , Carrier Proteins/metabolism , Rana catesbeiana
10.
Chembiochem ; 23(13): e202100625, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35315190

ABSTRACT

The malfunction and misregulation of voltage-gated sodium channels (NaV s) underlie in large part the electrical hyperexcitability characteristic of chronic inflammatory and neuropathic pain. NaV s are responsible for the initiation and propagation of electrical impulses (action potentials) in cells. Tissue and nerve injury alter the expression and localization of multiple NaV isoforms, including NaV 1.1, 1.3, and 1.6-1.9, resulting in aberrant action potential firing patterns. To better understand the role of NaV regulation, localization, and trafficking in electrogenesis and pain pathogenesis, a number of chemical and biological reagents for interrogating NaV function have been advanced. The development and application of such tools for understanding NaV physiology are the focus of this review.


Subject(s)
Nociception , Voltage-Gated Sodium Channels , Humans , Pain , Voltage-Gated Sodium Channels/metabolism
11.
Cell Chem Biol ; 29(4): 615-624.e5, 2022 04 21.
Article in English | MEDLINE | ID: mdl-34963066

ABSTRACT

Voltage-gated sodium channels (NaVs) are targets for a number of acute poisons. Many of these agents act as allosteric modulators of channel activity and serve as powerful chemical tools for understanding channel function. Herein, we detail studies with batrachotoxin (BTX), a potent steroidal amine, and three ester derivatives prepared through de novo synthesis against recombinant NaV subtypes (rNaV1.4 and hNaV1.5). Two of these compounds, BTX-B and BTX-cHx, are functionally equivalent to BTX, hyperpolarizing channel activation and blocking both fast and slow inactivation. BTX-yne-a C20-n-heptynoate ester-is a conspicuous outlier, eliminating fast but not slow inactivation. This property differentiates BTX-yne among other NaV modulators as a unique reagent that separates inactivation processes. These findings are supported by functional studies with bacterial NaVs (BacNaVs) that lack a fast inactivation gate. The availability of BTX-yne should advance future efforts aimed at understanding NaV gating mechanisms and designing allosteric regulators of NaV activity.


Subject(s)
Batrachotoxins , Voltage-Gated Sodium Channels , Batrachotoxins/pharmacology , Esters , Sodium/metabolism
12.
J Org Chem ; 86(24): 17790-17803, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34874731

ABSTRACT

Saxitoxin (STX) is the archetype of a large family (>50) of architecturally distinct, bisguanidinium natural products. Among this collection of isolates, two members, 11-saxitoxinethanoic acid (11-SEA) and zetekitoxin AB (ZTX), are unique, bearing carbon substitution at C11. A desire to efficiently access these compounds has motivated the development of new tactical approaches to a late-stage C11-ketone intermediate 26, designed to enable C-C bond formation using any one of a number of possible reaction technologies. Highlights of the synthesis of 26 include a metal-free, silylpyrrole oxidative dearomatization reaction and a vinylsilane epoxidation-rearrangement cascade to generate the requisite ketone. Nucleophilic addition to 26 makes possible the preparation of unnatural C11-substituted STXs. Olefination of this ketone is also demonstrated and, when followed by a redox-neutral isomerization reaction, affords 11-SEA.


Subject(s)
Biological Products , Saxitoxin , Oxidation-Reduction , Saxitoxin/analogs & derivatives
13.
J Gen Physiol ; 153(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34351379

ABSTRACT

Many poisonous organisms carry small-molecule toxins that alter voltage-gated sodium channel (NaV) function. Among these, batrachotoxin (BTX) from Pitohui poison birds and Phyllobates poison frogs stands out because of its lethality and unusual effects on NaV function. How these toxin-bearing organisms avoid autointoxication remains poorly understood. In poison frogs, a NaV DIVS6 pore-forming helix N-to-T mutation has been proposed as the BTX resistance mechanism. Here, we show that this variant is absent from Pitohui and poison frog NaVs, incurs a strong cost compromising channel function, and fails to produce BTX-resistant channels in poison frog NaVs. We also show that captivity-raised poison frogs are resistant to two NaV-directed toxins, BTX and saxitoxin (STX), even though they bear NaVs sensitive to both. Moreover, we demonstrate that the amphibian STX "toxin sponge" protein saxiphilin is able to protect and rescue NaVs from block by STX. Taken together, our data contradict the hypothesis that BTX autoresistance is rooted in the DIVS6 N→T mutation, challenge the idea that ion channel mutations are a primary driver of toxin resistance, and suggest the possibility that toxin sequestration mechanisms may be key for protecting poisonous species from the action of small-molecule toxins.


Subject(s)
Poisons , Animals , Batrachotoxins , Birds , Mutation , Poisons/toxicity , Sodium Channels/genetics
14.
Nat Commun ; 12(1): 4171, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34234116

ABSTRACT

Here we report the pharmacologic blockade of voltage-gated sodium ion channels (NaVs) by a synthetic saxitoxin derivative affixed to a photocleavable protecting group. We demonstrate that a functionalized saxitoxin (STX-eac) enables exquisite spatiotemporal control of NaVs to interrupt action potentials in dissociated neurons and nerve fiber bundles. The photo-uncaged inhibitor (STX-ea) is a nanomolar potent, reversible binder of NaVs. We use STX-eac to reveal differential susceptibility of myelinated and unmyelinated axons in the corpus callosum to NaV-dependent alterations in action potential propagation, with unmyelinated axons preferentially showing reduced action potential fidelity under conditions of partial NaV block. These results validate STX-eac as a high precision tool for robust photocontrol of neuronal excitability and action potential generation.


Subject(s)
Action Potentials/drug effects , NAV1.2 Voltage-Gated Sodium Channel/metabolism , Saxitoxin/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Animals , Axons/drug effects , Axons/metabolism , CHO Cells , Cells, Cultured , Corpus Callosum/cytology , Corpus Callosum/drug effects , Corpus Callosum/metabolism , Cricetulus , Embryo, Mammalian , Female , Hippocampus/cytology , Male , Mice , NAV1.2 Voltage-Gated Sodium Channel/genetics , Patch-Clamp Techniques , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saxitoxin/analogs & derivatives , Saxitoxin/radiation effects , Single-Cell Analysis , Spatio-Temporal Analysis , Ultraviolet Rays , Voltage-Gated Sodium Channel Blockers/radiation effects
15.
Eur Ann Otorhinolaryngol Head Neck Dis ; 138 Suppl 4: 107-108, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34127413
16.
Eur J Integr Med ; 43: 101308, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33584872

ABSTRACT

INTRODUCTION: In France March 14, 2020 a national lockdown was imposed in France for 55 days to prevent the spread of COVID-19 and all schools were closed. This study aimed to investigate the effects of home confinement as a result of  lockdown on the activity (physical activity and sedentary behaviors), and their determinants, on French children (6-10 years) and adolescents (11-17 years). METHODS: The National Observatory for Physical Activity and Sedentary behaviors launched an online survey from April 1st, to May 6th, 2020 using popular social networks and websites. It compared the level of physical activity (PA), sitting and screen time before and during the lockdown and identified the impact of the initial PA (active vs. inactive), sedentary (high vs. low) profiles of the participants and their housing conditions. RESULTS: 6,491 children were included in this study. Initially active children and adolescents decreased their PA more than those initially inactive (p>0.001), while those who met the sitting time recommendations increased more their sitting time during lockdown (p<0.001). The same applied to screen time (p<0.001). Living in an urban environment was associated with a decrease in PA (p<0.001), an increase in sitting time (p<0.001) and children's screen time (p=0.002) during lockdown. CONCLUSION: This study showed the deleterious effects of confinement caused by lockdown on physical activity and sedentary behaviors. Housing conditions were associated with lifestyle behaviors over this period of lockdown. Future public health policies should consider these results.

18.
Proc Natl Acad Sci U S A ; 117(51): 32711-32721, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33277431

ABSTRACT

CLC-2 is a voltage-gated chloride channel that is widely expressed in mammalian tissues. In the central nervous system, CLC-2 appears in neurons and glia. Studies to define how this channel contributes to normal and pathophysiological function in the central nervous system raise questions that remain unresolved, in part due to the absence of precise pharmacological tools for modulating CLC-2 activity. Herein, we describe the development and optimization of AK-42, a specific small-molecule inhibitor of CLC-2 with nanomolar potency (IC50 = 17 ± 1 nM). AK-42 displays unprecedented selectivity (>1,000-fold) over CLC-1, the closest CLC-2 homolog, and exhibits no off-target engagement against a panel of 61 common channels, receptors, and transporters expressed in brain tissue. Computational docking, validated by mutagenesis and kinetic studies, indicates that AK-42 binds to an extracellular vestibule above the channel pore. In electrophysiological recordings of mouse CA1 hippocampal pyramidal neurons, AK-42 acutely and reversibly inhibits CLC-2 currents; no effect on current is observed on brain slices taken from CLC-2 knockout mice. These results establish AK-42 as a powerful tool for investigating CLC-2 neurophysiology.


Subject(s)
Chloride Channels/antagonists & inhibitors , Chloride Channels/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Binding Sites , CHO Cells , CLC-2 Chloride Channels , Cell Line , Chloride Channels/genetics , Chloride Channels/metabolism , Cricetulus , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Hippocampus/metabolism , Humans , Mice, Inbred C57BL , Mice, Knockout , Molecular Docking Simulation , Organ Culture Techniques , Patch-Clamp Techniques , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Small Molecule Libraries/metabolism , Structure-Activity Relationship
19.
Sci Rep ; 10(1): 14791, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908170

ABSTRACT

The voltage-gated sodium channel isoform NaV1.7 is highly expressed in dorsal root ganglion neurons and is obligatory for nociceptive signal transmission. Genetic gain-of-function and loss-of-function NaV1.7 mutations have been identified in select individuals, and are associated with episodic extreme pain disorders and insensitivity to pain, respectively. These findings implicate NaV1.7 as a key pharmacotherapeutic target for the treatment of pain. While several small molecules targeting NaV1.7 have been advanced to clinical development, no NaV1.7-selective compound has shown convincing efficacy in clinical pain applications. Here we describe the discovery and characterization of ST-2262, a NaV1.7 inhibitor that blocks the extracellular vestibule of the channel with an IC50 of 72 nM and greater than 200-fold selectivity over off-target sodium channel isoforms, NaV1.1-1.6 and NaV1.8. In contrast to other NaV1.7 inhibitors that preferentially inhibit the inactivated state of the channel, ST-2262 is equipotent in a protocol that favors the resting state of the channel, a protocol that favors the inactivated state, and a high frequency protocol. In a non-human primate study, animals treated with ST-2262 exhibited reduced sensitivity to noxious heat. These findings establish the extracellular vestibule of the sodium channel as a viable receptor site for the design of selective ligands targeting NaV1.7.


Subject(s)
Guanidine/chemistry , NAV1.7 Voltage-Gated Sodium Channel/chemistry , Sodium Channel Blockers/chemistry , Sodium Channel Blockers/pharmacology , Animals , Drug Discovery , Ganglia, Spinal/metabolism , Humans , NAV1.1 Voltage-Gated Sodium Channel/chemistry , NAV1.2 Voltage-Gated Sodium Channel/chemistry , NAV1.3 Voltage-Gated Sodium Channel/chemistry , NAV1.4 Voltage-Gated Sodium Channel/chemistry , NAV1.5 Voltage-Gated Sodium Channel/chemistry , NAV1.6 Voltage-Gated Sodium Channel/chemistry , NAV1.8 Voltage-Gated Sodium Channel/chemistry , Protein Structure, Secondary
20.
Eur J Neurol ; 27(12): 2586-2594, 2020 12.
Article in English | MEDLINE | ID: mdl-32781490

ABSTRACT

BACKGROUND AND PURPOSE: In patients with spinal muscular atrophy (SMA), functional disease scores are frequently used to evaluate the course of the disease and the efficacy of treatment. The aim of the present study was to propose minimal clinically important difference (MCID) values for motor scores in order to estimate the degree of change within a functional score that can be considered clinically meaningful. METHODS: To estimate the MCID, distribution-based approaches were used. For each assessment [Revised Upper Limb Module (RULM), Hammersmith Functional Motor Scale Expanded (HFMSE) and 6-min walk test (6MWT)] and subgroup (SMA type 2, SMA type 3, ambulatory and non-ambulatory), the following MCID values based on a cohort of 51 adults with SMA were calculated: standard error of measurement (SEm), one-half of standard deviation (1/2 SD) and one-third of standard deviation (1/3 SD) of patients' baseline scores. RESULTS: For the overall cohort, the SEm, 1/2 SD and 1/3 SD MCID values were 2.9, 6.4 and 4.3 for the RULM and 4.3, 10.6 and 7.0 for the HFMSE, respectively. Subgroup analysis led to generally lower standard deviations and consecutively lower MCID values due to the significantly different motor functions of the groups. The respective MCID values for the 6MWT were 55.5 m, 71.1 m and 47.8 m. CONCLUSIONS: Our data provide MCID values for functional motor scores commonly used in adults with SMA in order to distinguish statistical effects from 'real' changes. A complementary systematic consensus process could help to further adjust the MCID values we propose.


Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Adult , Cohort Studies , Humans , Muscular Atrophy, Spinal/diagnosis , Spinal Muscular Atrophies of Childhood/diagnosis , Walk Test
SELECTION OF CITATIONS
SEARCH DETAIL
...