Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 4: 4743, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24752137

ABSTRACT

The transcription of tumor mutations from DNA into RNA has implications for biology, epigenetics and clinical practice. It is not clear if mutations are in general transcribed and, if so, at what proportion to the wild-type allele. Here, we examined the correlation between DNA mutation allele frequency and RNA mutation allele frequency. We sequenced the exome and transcriptome of tumor cell lines with large copy number variations, identified heterozygous single nucleotide mutations and absolute DNA copy number, and determined the corresponding DNA and RNA mutation allele fraction. We found that 99% of the DNA mutations in expressed genes are expressed as RNA. Moreover, we found a high correlation between the DNA and RNA mutation allele frequency. Exceptions are mutations that cause premature termination codons and therefore activate nonsense-mediated decay. Beyond this, we did not find evidence of any wide-scale mechanism, such as allele-specific epigenetic silencing, preferentially promoting mutated or wild-type alleles. In conclusion, our data strongly suggest that genes are equally transcribed from all alleles, mutated and wild-type, and thus transcribed in proportion to their DNA allele frequency.


Subject(s)
Alleles , Gene Frequency , Mutation , Neoplasms/genetics , Animals , Cell Line, Tumor , DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , Mice
2.
BMC Genomics ; 15: 190, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24621249

ABSTRACT

BACKGROUND: Tumor models are critical for our understanding of cancer and the development of cancer therapeutics. Here, we present an integrated map of the genome, transcriptome and immunome of an epithelial mouse tumor, the CT26 colon carcinoma cell line. RESULTS: We found that Kras is homozygously mutated at p.G12D, Apc and Tp53 are not mutated, and Cdkn2a is homozygously deleted. Proliferation and stem-cell markers, including Top2a, Birc5 (Survivin), Cldn6 and Mki67, are highly expressed while differentiation and top-crypt markers Muc2, Ms4a8a (MS4A8B) and Epcam are not. Myc, Trp53 (tp53), Mdm2, Hif1a, and Nras are highly expressed while Egfr and Flt1 are not. MHC class I but not MHC class II is expressed. Several known cancer-testis antigens are expressed, including Atad2, Cep55, and Pbk. The highest expressed gene is a mutated form of the mouse tumor antigen gp70. Of the 1,688 non-synonymous point variations, 154 are both in expressed genes and in peptides predicted to bind MHC and thus potential targets for immunotherapy development. Based on its molecular signature, we predicted that CT26 is refractory to anti-EGFR mAbs and sensitive to MEK and MET inhibitors, as have been previously reported. CONCLUSIONS: CT26 cells share molecular features with aggressive, undifferentiated, refractory human colorectal carcinoma cells. As CT26 is one of the most extensively used syngeneic mouse tumor models, our data provide a map for the rationale design of mode-of-action studies for pre-clinical evaluation of targeted- and immunotherapies.


Subject(s)
Carcinoma/genetics , Colonic Neoplasms/genetics , Transcriptome , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Carcinoma/immunology , Cell Line, Tumor , Colonic Neoplasms/immunology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , High-Throughput Nucleotide Sequencing , Mice , Mice, Inbred BALB C , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins p21(ras)/genetics , Sequence Analysis, DNA
3.
J Immunol ; 192(5): 2091-8, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24470499

ABSTRACT

Following inconspicuous preclinical testing, the superagonistic anti-CD28 mAb TGN1412 was applied to six study participants who all developed a devastating cytokine storm. We verified that TGN1412 treatment of fresh PBMCs induced only moderate responses, whereas restoration of tissue-like conditions by high-density preculture (HDC) allowed vigorous cytokine production. TGN1412 treatment of T cells isolated from HDC-PBMCs induced moderate cytokine responses, which upon additional anti-IgG crosslinking were significantly boosted. Moreover, coincubation of TGN1412-treated T cells with B cells expressing the intermediate affinity Fcγ receptor IIB (CD32B), or coincubation with CD32B(+) transfectants, resulted in robust T cell activation. This was surprising because TGN1412 was expressed as an Ig of the subclass 4 (IgG4), which was shown before to exhibit only minor affinity to FcγRs. Transcriptome analysis of TGN1412-treated T cells revealed that similar gene signatures were induced irrespective of whether T cells derived from fresh or HDC-PBMCs were studied. Collectively, these data indicate that HDC-PBMCs and HDC-PBMC-derived T cells mount rapid TGN1412 responses, which are massively boosted by FcγR crosslinking, in particular by CD32-expressing B cells. These results qualify HDC-PBMCs as a valuable in vitro test system for the analysis of complex mAb functions.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Cytokines/immunology , Gene Expression Regulation/drug effects , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulin G/pharmacology , Receptors, IgG/immunology , Antibodies, Monoclonal, Humanized/immunology , Female , Gene Expression Profiling , Gene Expression Regulation/immunology , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Male , Transcriptome/drug effects , Transcriptome/immunology
4.
Bioinformatics ; 29(9): 1233-4, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23479349

ABSTRACT

SUMMARY: We have developed a laboratory information management system (LIMS) for a next-generation sequencing (NGS) laboratory within the existing Galaxy platform. The system provides lab technicians standard and customizable sample information forms, barcoded submission forms, tracking of input sample quality, multiplex-capable automatic flow cell design and automatically generated sample sheets to aid physical flow cell preparation. In addition, the platform provides the researcher with a user-friendly interface to create a request, submit accompanying samples, upload sample quality measurements and access to the sequencing results. As the LIMS is within the Galaxy platform, the researcher has access to all Galaxy analysis tools and workflows. The system reports requests and associated information to a message queuing system, such that information can be posted and stored in external systems, such as a wiki. Through an API, raw sequencing results can be automatically pre-processed and uploaded to the appropriate request folder. Developed for the Illumina HiSeq 2000 instrument, many features are directly applicable to other instruments. AVAILABILITY AND IMPLEMENTATION: The code and documentation are available at http://tron-mainz.de/tron-facilities/computational-medicine/galaxy-lims/


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Information Systems , Software , User-Computer Interface , Workflow
5.
Genome Med ; 4(12): 102, 2012.
Article in English | MEDLINE | ID: mdl-23259685

ABSTRACT

We present a method, seq2HLA, for obtaining an individual's human leukocyte antigen (HLA) class I and II type and expression using standard next generation sequencing RNA-Seq data. RNA-Seq reads are mapped against a reference database of HLA alleles, and HLA type, confidence score and locus-specific expression level are determined. We successfully applied seq2HLA to 50 individuals included in the HapMap project, yielding 100% specificity and 94% sensitivity at a P-value of 0.1 for two-digit HLA types. We determined HLA type and expression for previously un-typed Illumina Body Map tissues and a cohort of Korean patients with lung cancer. Because the algorithm uses standard RNA-Seq reads and requires no change to laboratory protocols, it can be used for both existing datasets and future studies, thus adding a new dimension for HLA typing and biomarker studies.

6.
BMC Genomics ; 13: 550, 2012 Oct 13.
Article in English | MEDLINE | ID: mdl-23062031

ABSTRACT

BACKGROUND: Small non-coding RNAs (sRNAs) have attracted attention as a new class of gene regulators in both eukaryotes and bacteria. Genome-wide screening methods have been successfully applied in Gram-negative bacteria to identify sRNA regulators. Many sRNAs are well characterized, including their target mRNAs and mode of action. In comparison, little is known about sRNAs in Gram-positive pathogens. In this study, we identified novel sRNAs in the exclusively human pathogen Streptococcus pyogenes M49 (Group A Streptococcus, GAS M49), employing a whole genome intergenic tiling array approach. GAS is an important pathogen that causes diseases ranging from mild superficial infections of the skin and mucous membranes of the naso-pharynx, to severe toxic and invasive diseases. RESULTS: We identified 55 putative sRNAs in GAS M49 that were expressed during growth. Of these, 42 were novel. Some of the newly-identified sRNAs belonged to one of the common non-coding RNA families described in the Rfam database. Comparison of the results of our screen with the outcome of two recently published bioinformatics tools showed a low level of overlap between putative sRNA genes. Previously, 40 potential sRNAs have been reported to be expressed in a GAS M1T1 serotype, as detected by a whole genome intergenic tiling array approach. Our screen detected 12 putative sRNA genes that were expressed in both strains. Twenty sRNA candidates appeared to be regulated in a medium-dependent fashion, while eight sRNA genes were regulated throughout growth in chemically defined medium. Expression of candidate genes was verified by reverse transcriptase-qPCR. For a subset of sRNAs, the transcriptional start was determined by 5' rapid amplification of cDNA ends-PCR (RACE-PCR) analysis. CONCLUSIONS: In accord with the results of previous studies, we found little overlap between different screening methods, which underlines the fact that a comprehensive analysis of sRNAs expressed by a given organism requires the complementary use of different methods and the investigation of several environmental conditions. Despite a high conservation of sRNA genes within streptococci, the expression of sRNAs appears to be strain specific.


Subject(s)
Gene Expression Regulation, Bacterial/genetics , Genome, Bacterial/genetics , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Streptococcus pyogenes/genetics , Base Sequence , Blotting, Northern , Computational Biology , DNA, Intergenic/genetics , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology , Species Specificity , Streptococcus pyogenes/growth & development
7.
Nat Commun ; 3: 698, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22426219

ABSTRACT

The Tyrolean Iceman, a 5,300-year-old Copper age individual, was discovered in 1991 on the Tisenjoch Pass in the Italian part of the Ötztal Alps. Here we report the complete genome sequence of the Iceman and show 100% concordance between the previously reported mitochondrial genome sequence and the consensus sequence generated from our genomic data. We present indications for recent common ancestry between the Iceman and present-day inhabitants of the Tyrrhenian Sea, that the Iceman probably had brown eyes, belonged to blood group O and was lactose intolerant. His genetic predisposition shows an increased risk for coronary heart disease and may have contributed to the development of previously reported vascular calcifications. Sequences corresponding to ~60% of the genome of Borrelia burgdorferi are indicative of the earliest human case of infection with the pathogen for Lyme borreliosis.


Subject(s)
Genome, Human , Genome, Mitochondrial , Mummies , Base Sequence , Borrelia burgdorferi/genetics , Chromosome Mapping , DNA, Mitochondrial/genetics , Genetic Predisposition to Disease , History, Ancient , Humans , Lyme Disease/history , Mitochondria/genetics , Mummies/microbiology , Paleontology , Phenotype , Sequence Analysis, DNA , Vascular Calcification
8.
Methods Mol Biol ; 822: 143-52, 2012.
Article in English | MEDLINE | ID: mdl-22144197

ABSTRACT

MicroRNAs (miRNAs) are a new class of biomarkers. They represent a group of small, noncoding RNAs that regulate gene expression at the posttranslational level by degrading or blocking translation of messenger RNA (mRNA) targets. miRNAs are important players when it comes to regulating cellular functions and in several diseases, including cancer (Cancer Res 66:7390-7394, 2006; Nature 435:834-838, 2005). So far, miRNAs have been extensively studied in tissue material. Only recently, it was found that miRNAs also exist in a broad range of body fluids (Clin Chem 56:1733-1741, 2010). A major challenge still is the efficient and specific detection of miRNAs. The short length of miRNAs, with only 17-27 base pairs, comes with technical difficulties for analysis. Furthermore, individual miRNAs, especially members of a miRNA family (e.g., the let-7 family), show high sequence homology, with sequences differing by as little as a single base pair. Although miRNAs are abundant in higher copy numbers compared to mRNAs, miRNAs lack a common feature like a poly-A tail that eases detection in a complex background of other RNA species. Besides qPCR, in situ hybridization, and next-generation sequencing, microarrays are versatile tools for high-throughput analysis of already known miRNAs (PLoS One 12:e9685, 2010; Nat Genet 38:S2-S7, 2006; Nature Methods 50:298-301, 2010). Different assay formats have been proposed for expression analysis of miRNAs on microarrays, of which most employed prelabeled RNA molecules. As a modification, the so-called RAKE assay was developed that combined the use of unlabeled RNA with on-chip enzymatic labeling by exonuclease cleavage and polymerase primer extension (RNA 12:187-191, 2006; Nature Methods 1:155-161, 2004; Genome Res 16:1289-1298, 2006).Here, we describe a simple method for detection of miRNAs based on a combination of stringent hybridization and enzymatic primer extension on a microfluidic microarray starting from total RNA material, without the need for enrichment, amplification, or labeling of the native RNA samples (N Biotechnol 25:142-149, 2008). This assay can be used with starting material as low as 30 ng of total RNA. We have used this technique extensively for identifying specific sets of miRNAs (miRNA signatures) for diagnosis of cancer and cardiovascular or inflammatory diseases from blood samples of patients (Br J Cancer 103:693-700, 2010; BMC Cancer 9:353, 2009; PLoS One 4:e7440, 2009; BMC Cancer 10:262, 2010; Basic Res Cardiol 106(1):13-23, 2011).


Subject(s)
Gene Expression Profiling/methods , MicroRNAs/analysis , Microfluidic Analytical Techniques/methods , Animals , Gene Expression Profiling/instrumentation , Humans , Microfluidic Analytical Techniques/instrumentation , Nucleic Acid Hybridization/methods , Quality Control , RNA/blood , RNA/isolation & purification
9.
Mol Biosyst ; 7(12): 3187-99, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22027949

ABSTRACT

MicroRNAs (miRNAs) are increasingly envisaged as biomarkers for various tumor and non-tumor diseases. MiRNA biomarker identification is, as of now, mostly performed in a candidate approach, limiting discovery to annotated miRNAs and ignoring unknown ones with potential diagnostic value. Here, we applied high-throughput SOLiD transcriptome sequencing of miRNAs expressed in human peripheral blood of patients with lung cancer. We developed a bioinformatics pipeline to generate profiles of miRNA markers and to detect novel miRNAs with diagnostic information. Applying our approach, we detected 76 previously unknown miRNAs and 41 novel mature forms of known precursors. In addition, we identified 32 annotated and seven unknown miRNAs that were significantly altered in cancer patients. These results demonstrate that deep sequencing of small RNAs bears high potential to quantify miRNAs in peripheral blood and to identify previously unknown miRNAs serving as biomarker for lung cancer.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Lung Neoplasms/genetics , MicroRNAs/blood , Adult , Aged , Base Sequence , Biomarkers, Tumor , Female , Gene Expression Profiling , Humans , Lung Neoplasms/blood , Male , MicroRNAs/genetics , Middle Aged , Sequence Analysis, RNA , Transcriptome
10.
Nat Methods ; 8(10): 841-3, 2011 Sep 04.
Article in English | MEDLINE | ID: mdl-21892151

ABSTRACT

In a multicenter study, we determined the expression profiles of 863 microRNAs by array analysis of 454 blood samples from human individuals with different cancers or noncancer diseases, and validated this 'miRNome' by quantitative real-time PCR. We detected consistently deregulated profiles for all tested diseases; pathway analysis confirmed disease association of the respective microRNAs. We observed significant correlations (P = 0.004) between the genomic location of disease-associated genetic variants and deregulated microRNAs.


Subject(s)
Disease/genetics , MicroRNAs/blood , MicroRNAs/genetics , Gene Expression Profiling , Genetic Variation/genetics , Humans , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
11.
Circ Cardiovasc Genet ; 4(2): 110-22, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21252143

ABSTRACT

BACKGROUND: Today, mutations in more than 30 different genes have been found to cause inherited cardiomyopathies, some associated with very poor prognosis. However, because of the genetic heterogeneity and limitations in throughput and scalability of current diagnostic tools up until now, it is hardly possible to genetically characterize patients with cardiomyopathy in a fast, comprehensive, and cost-efficient manner. METHODS AND RESULTS: We established an array-based subgenomic enrichment followed by next-generation sequencing to detect mutations in patients with hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). With this approach, we show that the genomic region of interest can be enriched by a mean factor of 2169 compared with the coverage of the whole genome, resulting in high sequence coverage of selected disease genes and allowing us to define the genetic pathogenesis of cardiomyopathies in a single sequencing run. In 6 patients, we detected disease-causing mutations, 2 microdeletions, and 4 point mutations. Furthermore, we identified several novel nonsynonymous variants, which are predicted to be harmful, and hence, might be potential disease mutations or modifiers for DCM or HCM. CONCLUSIONS: The approach presented here allows for the first time a comprehensive genetic screening in patients with hereditary DCM or HCM in a fast and cost-efficient manner.


Subject(s)
Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Hypertrophic/genetics , Sequence Analysis, DNA/methods , Adult , Base Sequence , Cardiac Myosins/genetics , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Hypertrophic/diagnosis , Carrier Proteins/genetics , Child , Codon, Nonsense , Female , Frameshift Mutation , Gene Deletion , Genetic Heterogeneity , Humans , Male , Middle Aged , Mutation, Missense , Myosin Heavy Chains/genetics , Point Mutation , Protein Serine-Threonine Kinases/genetics
12.
Nat Biotechnol ; 28(12): 1291-4, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21113166

ABSTRACT

The construction of synthetic biological systems involving millions of nucleotides is limited by the lack of high-quality synthetic DNA. Consequently, the field requires advances in the accuracy and scale of chemical DNA synthesis and in the processing of longer DNA assembled from short fragments. Here we describe a highly parallel and miniaturized method, called megacloning, for obtaining high-quality DNA by using next-generation sequencing (NGS) technology as a preparative tool. We demonstrate our method by processing both chemically synthesized and microarray-derived DNA oligonucleotides with a robotic system for imaging and picking beads directly off of a high-throughput pyrosequencing platform. The method can reduce error rates by a factor of 500 compared to the starting oligonucleotide pool generated by microarray. We use DNA obtained by megacloning to assemble synthetic genes. In principle, millions of DNA fragments can be sequenced, characterized and sorted in a single megacloner run, enabling constructive biology up to the megabase scale.


Subject(s)
DNA/chemical synthesis , Genes, Synthetic , Oligonucleotide Array Sequence Analysis/methods , Polymerase Chain Reaction/methods , DNA/chemistry , Humans , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Robotics
13.
J Mol Evol ; 59(4): 536-45, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15638465

ABSTRACT

By protein immunobiochemistry and cDNA sequencing, we have found only a single hemocyanin polypeptide in an opisthobranch gastropod, the sea hare Aplysia californica, which contrasts with previously studied prosobranch gastropods, which express two distinct isoforms of this extracellular respiratory protein. We have cloned and sequenced the cDNA encoding the complete polypeptide of Aplysia californica hemocyanin (AcH). The cDNA comprises 11,433 bp, encompassing a 5'UTR of 77 bp, a 3'UTR of 1057 bp, and an open reading frame for a signal peptide of 20 amino acids plus a polypeptide of 3412 amino acids (Mr ca. 387 kDa). This polypeptide is the subunit of the cylindrical native hemocyanin (Mr ca. 8 MDa). It comprises eight different functional units (FUs: a, b, c, d, e, f, g, h) that have been identified immunobiochemically after limited proteolysis of AcH purified from the hemolymph. Each FU shows a highly conserved copper-A and copper-B site for reversible oxygen binding. FU AcH-h carries a specific C-terminal extension of ca. 100 amino acids that include two cysteines that may be utilized for disulfide bridge formation. Potential N-glycosylation sites are present in six FUs but lacking in AcH-b and AcH-c. On the basis of multiple sequence alignments, phylogenetic trees and a statistically firm molecular clock were calculated. The latter suggests that the last common ancestor of Haliotis and Aplysia lived 373+/-47 million years ago, in convincing agreement with fossil records from the early Devonian. However, the gene duplication yielding the two distinct hemocyanin isoforms found today in Haliotis tuberculata occurred 343+/-43 million years ago.


Subject(s)
Aplysia/genetics , Evolution, Molecular , Hemocyanins/chemistry , Hemocyanins/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary/chemistry , Hemocyanins/ultrastructure , Molecular Sequence Data , Phylogeny , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Structure, Tertiary , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...