Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Plant Sci ; 13: 1030862, 2022.
Article in English | MEDLINE | ID: mdl-36407590

ABSTRACT

Huanglongbing (HLB) is a disease that is responsible for the death of millions of trees worldwide. The bacterial causal agent belongs to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacterium lead most of the time to a reaction of the tree associated with callose synthesis at the phloem sieve plate. Thus, the obstruction of pores providing connections between adjacent sieve elements will limit the symplastic transport of the sugars and starches synthesized through photosynthesis. In the present article, we investigated the impact of the use of tetraploid Swingle citrumelo (Citrus paradisi Macfrad × Poncirus trifoliata [L.] Raf) rootstock on HLB tolerance, compared to its respective diploid. HLB-infected diploid and tetraploid rootstocks were investigated when grafted with Mexican and Persian limes. Secondary roots were anatomically studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to observe callose deposition at the phloem sieve plate and to evaluate the impact of the bacterium's presence at the cellular level. Voltammetry of immobilized microparticles (VIMP) in roots was applied to determine the oxidative stress status of root samples. In the field, Mexican and Persian lime leaves of trees grafted onto tetraploid rootstock presented less symptoms of HLB. Anatomical analysis showed much stronger secondary root degradation in diploid rootstock, compared to tetraploid rootstock. Analysis of the root sieve plate in control root samples showed that pores were approximately 1.8-fold larger in tetraploid Swingle citrumelo than in its respective diploid. SEM analyses of root samples did not reveal any callose deposition into pores of diploid and tetraploid genotypes. VIMP showed limited oxidative stress in tetraploid samples, compared to diploid ones. These results were even strongly enhanced when rootstocks were grafted with Persian limes, compared to Mexican limes, which was corroborated by stronger polyphenol contents. TEM analysis showed that the bacteria was present in both ploidy root samples with no major impacts detected on cell walls or cell structures. These results reveal that tetraploid Swingle citrumelo rootstock confers better tolerance to HLB than diploid. Additionally, an even stronger tolerance is achieved when the triploid Persian lime scion is associated.

2.
Front Plant Sci ; 12: 685679, 2021.
Article in English | MEDLINE | ID: mdl-34512684

ABSTRACT

Huanglongbing (HLB) is presently a major threat to the citrus industry. Because of this disease, millions of trees are currently dying worldwide. The putative causal agent is a motile bacteria belonging to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacteria is responsible for the synthesis of callose at the phloem sieve plate, leading to the obstruction of the pores that provide connections between adjacent sieve elements, thus limiting the symplastic transport of the sugars and starches synthesized in leaves to the other plant organs. The Persian triploid lime (Citrus latifolia) is one of the most HLB-tolerant citrus varieties, but the determinants associated with the tolerance are still unknown. HLB-infected diploid Mexican lime (Citrus aurantiifolia) and Persian lime were investigated. The leaf petiole was analyzed using scanning electron microscopy (SEM) to observe callose deposition at the phloem sieve plate. Leaf starch contents and detoxification enzyme activities were investigated. In the field, Persian lime leaves present more limited symptoms due to HLB than the Mexican lime leaves do. Photosynthesis, stomatal conductance, and transpiration decreased compared with control plants, but values remained greater in the Persian than in the Mexican lime. Analysis of the petiole sieve plate in control petiole samples showed that pores were approximately 1.8-fold larger in the Persian than in the Mexican lime. SEM analyses of petiole samples of symptomatic leaves showed the important deposition of callose into pores of Mexican and Persian limes, whereas biochemical analyses revealed better detoxification in Persian limes than in Mexican limes. Moreover, SEM analyses of infected petiole samples of asymptomatic leaves showed much larger callose depositions into the Mexican lime pores than in the Persian lime pores, whereas biochemical traits revealed much better behavior in Persian limes than in Mexican limes. Our results reveal that polyploids present specific behaviors associated with important physiological and biochemical determinants that may explain the better tolerance of the Persian lime against HLB compared with the Mexican lime.

3.
Plant Dis ; 98(2): 191-196, 2014 Feb.
Article in English | MEDLINE | ID: mdl-30708741

ABSTRACT

Spread of leaf scald in modern sugarcane cultivars in Guadeloupe occurs through aerial dissemination of Xanthomonas albilineans. However, the importance of host genotype on the foliar spread of leaf scald has never been investigated. To explore this, we followed two trials used to screen sugarcane cultivars for resistance to leaf scald under natural inoculum pressure. Leaf scald epidemic characteristics were studied by measuring epiphytic populations of X. albilineans, leaf symptom incidence and severity, and the number of infected stalks. In both trials, epiphytic X. albilineans populations and incidence of foliar symptoms varied between sugarcane cultivars (P < 0.001 in each trial for both traits) and differences in stalk infection between cultivars was also observed (P < 0.002 and P < 0.07 for trials A and B, respectively). Part of the cultivar resistance that minimizes epiphytic bacterial populations is correlated to resistance to internal leaf tissue infection as expressed by leaf symptoms. No correlation was found between epiphytic X. albilineans populations of cultivar and the incidence of stalk infection. However, foliar symptom incidence was inconsistently correlated with stalk infection. Resistance of sugarcane to leaf scald appears to involve several traits, including limiting size of epiphytic X. albilineans populations and limiting the capacity of the pathogen to produce leaf necrotic symptoms by invading the leaf vascular system or to move from the leaf into the stalk.

SELECTION OF CITATIONS
SEARCH DETAIL
...