Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Exp Med ; 221(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38442272

ABSTRACT

Meningeal lymphatic vessels (MLVs) promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelial growth factor-C (VEGF-C) regulates MLV development and maintenance and has therapeutic potential for treating neurological disorders. Herein, we investigated the effects of VEGF-C overexpression on brain fluid drainage and ischemic stroke outcomes in mice. Intracerebrospinal administration of an adeno-associated virus expressing mouse full-length VEGF-C (AAV-mVEGF-C) increased CSF drainage to the deep cervical lymph nodes (dCLNs) by enhancing lymphatic growth and upregulated neuroprotective signaling pathways identified by single nuclei RNA sequencing of brain cells. In a mouse model of ischemic stroke, AAV-mVEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage, associated with mitigated microglia-mediated inflammation and increased BDNF signaling in brain cells. Neuroprotective effects of VEGF-C were lost upon cauterization of the dCLN afferent lymphatics and not mimicked by acute post-stroke VEGF-C injection. We conclude that VEGF-C prophylaxis promotes multiple vascular, immune, and neural responses that culminate in a protection against neurological damage in acute ischemic stroke.


Subject(s)
Ischemic Stroke , Stroke , Animals , Mice , Vascular Endothelial Growth Factor C , Neuroinflammatory Diseases , Drainage
2.
Sci Transl Med ; 15(714): eadg8656, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37729432

ABSTRACT

Human diseases may be modeled in animals to allow preclinical assessment of putative new clinical interventions. Recent, highly publicized failures of large clinical trials called into question the rigor, design, and value of preclinical assessment. We established the Stroke Preclinical Assessment Network (SPAN) to design and implement a randomized, controlled, blinded, multi-laboratory trial for the rigorous assessment of candidate stroke treatments combined with intravascular thrombectomy. Efficacy and futility boundaries in a multi-arm multi-stage statistical design aimed to exclude from further study highly effective or futile interventions after each of four sequential stages. Six independent research laboratories performed a standard focal cerebral ischemic insult in five animal models that included equal numbers of males and females: young mice, young rats, aging mice, mice with diet-induced obesity, and spontaneously hypertensive rats. The laboratories adhered to a common protocol and efficiently enrolled 2615 animals with full data completion and comprehensive animal tracking. SPAN successfully implemented treatment masking, randomization, prerandomization inclusion and exclusion criteria, and blinded assessment of outcomes. The SPAN design and infrastructure provide an effective approach that could be used in similar preclinical, multi-laboratory studies in other disease areas and should help improve reproducibility in translational science.


Subject(s)
Ischemic Stroke , Stroke , Female , Humans , Male , Rats , Animals , Mice , Rodentia , Laboratories , Reproducibility of Results , Stroke/therapy
3.
bioRxiv ; 2023 May 30.
Article in English | MEDLINE | ID: mdl-37398128

ABSTRACT

Meningeal lymphatic vessels promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelium growth factor-C (VEGF-C) is essential for meningeal lymphatic development and maintenance and has therapeutic potential for treating neurological disorders, including ischemic stroke. We have investigated the effects of VEGF-C overexpression on brain fluid drainage, single cell transcriptome in the brain, and stroke outcomes in adult mice. Intra-cerebrospinal fluid administration of an adeno-associated virus expressing VEGF-C (AAV-VEGF-C) increases the CNS lymphatic network. Post-contrast T1 mapping of the head and neck showed that deep cervical lymph node size and drainage of CNS-derived fluids were increased. Single nuclei RNA sequencing revealed a neuro-supportive role of VEGF-C via upregulation of calcium and brain-derived neurotrophic factor (BDNF) signaling pathways in brain cells. In a mouse model of ischemic stroke, AAV-VEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage. AAV-VEGF-C thus promotes CNS-derived fluid and solute drainage, confers neuroprotection, and reduces ischemic stroke damage. Short abstract: Intrathecal delivery of VEGF-C increases the lymphatic drainage of brain-derived fluids confers neuroprotection, and improves neurological outcomes after ischemic stroke.

4.
Stroke ; 53(5): 1802-1812, 2022 05.
Article in English | MEDLINE | ID: mdl-35354299

ABSTRACT

Cerebral ischemia and reperfusion initiate cellular events in brain that lead to neurological disability. Investigating these cellular events provides ample targets for developing new treatments. Despite considerable work, no such therapy has translated into successful stroke treatment. Among other issues-such as incomplete mechanistic knowledge and faulty clinical trial design-a key contributor to prior translational failures may be insufficient scientific rigor during preclinical assessment: nonblinded outcome assessment; missing randomization; inappropriate sample sizes; and preclinical assessments in young male animals that ignore relevant biological variables, such as age, sex, and relevant comorbid diseases. Promising results are rarely replicated in multiple laboratories. We sought to address some of these issues with rigorous assessment of candidate treatments across 6 independent research laboratories. The Stroke Preclinical Assessment Network (SPAN) implements state-of-the-art experimental design to test the hypothesis that rigorous preclinical assessment can successfully reduce or eliminate common sources of bias in choosing treatments for evaluation in clinical studies. SPAN is a randomized, placebo-controlled, blinded, multilaboratory trial using a multi-arm multi-stage protocol to select one or more putative stroke treatments with an implied high likelihood of success in human clinical stroke trials. The first stage of SPAN implemented procedural standardization and experimental rigor. All participating research laboratories performed middle cerebral artery occlusion surgery adhering to a common protocol and rapidly enrolled 913 mice in the first of 4 planned stages with excellent protocol adherence, remarkable data completion and low rates of subject loss. SPAN stage 1 successfully implemented treatment masking, randomization, prerandomization inclusion/exclusion criteria, and blinded assessment to exclude bias. Our data suggest that a large, multilaboratory, preclinical assessment effort to reduce known sources of bias is feasible and practical. Subsequent SPAN stages will evaluate candidate treatments for potential success in future stroke clinical trials using aged animals and animals with comorbid conditions.


Subject(s)
Brain Ischemia , Stroke , Aged , Animals , Brain , Brain Ischemia/therapy , Feasibility Studies , Humans , Infarction, Middle Cerebral Artery/therapy , Male , Mice , Stroke/therapy
7.
Nature ; 577(7792): 689-694, 2020 01.
Article in English | MEDLINE | ID: mdl-31942068

ABSTRACT

Immune surveillance against pathogens and tumours in the central nervous system is thought to be limited owing to the lack of lymphatic drainage. However, the characterization of the meningeal lymphatic network has shed light on previously unappreciated ways that an immune response can be elicited to antigens that are expressed in the brain1-3. Despite progress in our understanding of the development and structure of the meningeal lymphatic system, the contribution of this network in evoking a protective antigen-specific immune response in the brain remains unclear. Here, using a mouse model of glioblastoma, we show that the meningeal lymphatic vasculature can be manipulated to mount better immune responses against brain tumours. The immunity that is mediated by CD8 T cells to the glioblastoma antigen is very limited when the tumour is confined to the central nervous system, resulting in uncontrolled tumour growth. However, ectopic expression of vascular endothelial growth factor C (VEGF-C) promotes enhanced priming of CD8 T cells in the draining deep cervical lymph nodes, migration of CD8 T cells into the tumour, rapid clearance of the glioblastoma and a long-lasting antitumour memory response. Furthermore, transfection of an mRNA construct that expresses VEGF-C works synergistically with checkpoint blockade therapy to eradicate existing glioblastoma. These results reveal the capacity of VEGF-C to promote immune surveillance of tumours, and suggest a new therapeutic approach to treat brain tumours.


Subject(s)
Brain Neoplasms/immunology , Glioblastoma/immunology , Immunologic Surveillance/immunology , Lymph Nodes/immunology , Lymphatic Vessels/immunology , Vascular Endothelial Growth Factor C/metabolism , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/immunology , Cell Line, Tumor , Cell Movement , Central Nervous System/immunology , Central Nervous System/pathology , Cross-Priming , Female , Glioblastoma/drug therapy , Glioblastoma/pathology , HEK293 Cells , Humans , Immunologic Memory/immunology , Lymphangiogenesis , Male , Melanoma/drug therapy , Melanoma/immunology , Meninges/immunology , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Vascular Endothelial Growth Factor C/administration & dosage , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/therapeutic use
8.
Nat Commun ; 10(1): 4594, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31597914

ABSTRACT

Cranial lymphatic vessels (LVs) are involved in the transport of fluids, macromolecules and central nervous system (CNS) immune responses. Little information about spinal LVs is available, because these delicate structures are embedded within vertebral tissues and difficult to visualize using traditional histology. Here we show an extended vertebral column LV network using three-dimensional imaging of decalcified iDISCO+-clarified spine segments. Vertebral LVs connect to peripheral sensory and sympathetic ganglia and form metameric vertebral circuits connecting to lymph nodes and the thoracic duct. They drain the epidural space and the dura mater around the spinal cord and associate with leukocytes. Vertebral LVs remodel extensively after spinal cord injury and VEGF-C-induced vertebral lymphangiogenesis exacerbates the inflammatory responses, T cell infiltration and demyelination following focal spinal cord lesion. Therefore, vertebral LVs add to skull meningeal LVs as gatekeepers of CNS immunity and may be potential targets to improve the maintenance and repair of spinal tissues.


Subject(s)
Lymph Nodes/physiology , Lymphatic Vessels/physiology , Spinal Cord Injuries/physiopathology , Spine/physiology , Thoracic Duct/physiology , Animals , Image Processing, Computer-Assisted/methods , Lymph Nodes/anatomy & histology , Lymphatic Vessels/anatomy & histology , Male , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Microscopy, Fluorescence , Spinal Cord Injuries/pathology , Spine/anatomy & histology , Thoracic Duct/anatomy & histology
9.
Med Sci (Paris) ; 35(1): 55-61, 2019 Jan.
Article in French | MEDLINE | ID: mdl-30672459

ABSTRACT

The considerable metabolic activity of the central nervous system (CNS) requires an efficient system of tissue drainage and detoxification. The CNS is however devoid of lymphatic vessels, a vasculature ensuring interstitial fluid drainage and immune survey in other organs. A unique system of drainage has recently been identified between the cerebrospinal fluid (CSF), brain interstitial fluids and meningeal lymphatic vessels. This system is coupling a cerebral "glymphatic" flow with a meningeal lymphatic vasculature. The "glymphatic" system includes perivascular spaces and astrocytes, and drains interstitial fluids, from and towards the CSF. Meningeal lymphatic vessels are functionally linked to the cerebral "glymphatic" efflux by clearing intracerebral macromolecules and antigens towards the peripheral lymphatic system. The "glymphatic"-"meningeal lymphatics" system is potentially offering new therapeutic targets to improve cerebral drainage and immune survey in human CNS diseases.


Subject(s)
Central Nervous System/anatomy & histology , Glymphatic System/anatomy & histology , Lymphatic System/anatomy & histology , Brain/anatomy & histology , Brain/immunology , Central Nervous System/immunology , Central Nervous System Diseases/immunology , Cerebrospinal Fluid/immunology , Extracellular Fluid/immunology , Glymphatic System/immunology , Humans , Lymphatic System/immunology , Lymphatic Vessels/anatomy & histology , Lymphatic Vessels/immunology , Meninges/anatomy & histology
10.
J Cereb Blood Flow Metab ; 37(6): 2196-2207, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27466373

ABSTRACT

Recent advances in MRI methodology, such as microvascular and brain oxygenation (StO2) imaging, may prove useful in obtaining information about the severity of the acute stroke. We assessed the potential of StO2 to detect the ischaemic core in the acute phase compared to apparent diffusion coefficient and to predict the final necrosis. Sprague-Dawley rats (n = 38) were imaged during acute stroke (D0) and 21 days after (D21). A multiparametric MRI protocol was performed at 4.7T to characterize brain damage within three region of interest: 'LesionD0' (diffusion), 'Mismatch' representing penumbra (perfusion/diffusion) and 'Hypoxia' (voxels < 40% of StO2 within the region of interest LesionD0). Voxel-based analysis of stroke revealed heterogeneity of the region of interest LesionD0, which included voxels with different degrees of oxygenation decrease. This finding was supported by a dramatic decrease of vascular and perfusion parameters within the region of interest hypoxia. This zone presented the lowest values of almost all parameters analysed, indicating a higher severity. Our study demonstrates the potential of StO2 magnetic resonance imaging to more accurately detect the ischaemic core without the inclusion of any reversible ischaemic damage. Our follow-up study indicates that apparent diffusion coefficient imaging overestimated the final necrosis while StO2 imaging did not.


Subject(s)
Brain Ischemia/metabolism , Brain/metabolism , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/methods , Oxygen/metabolism , Stroke/metabolism , Animals , Brain/diagnostic imaging , Brain/physiopathology , Brain Ischemia/complications , Brain Ischemia/diagnostic imaging , Brain Ischemia/physiopathology , Male , Rats, Sprague-Dawley , Stroke/diagnostic imaging , Stroke/etiology , Stroke/physiopathology
11.
Sci Rep ; 6: 37071, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27883015

ABSTRACT

In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain/blood supply , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Microvessels/diagnostic imaging , Stroke/diagnostic imaging , Animals , Cell Line, Tumor , Disease Models, Animal , Glioma/diagnostic imaging , Male , Rats, Inbred F344
12.
Stem Cells Int ; 2016: 6810562, 2016.
Article in English | MEDLINE | ID: mdl-27274738

ABSTRACT

Stroke is an important health issue corresponding to the second cause of mortality and first cause of severe disability with no effective treatments after the first hours of onset. Regenerative approaches such as cell therapy provide an increase in endogenous brain structural plasticity but they are not enough to promote a complete recovery. Tissue engineering has recently aroused a major interesting development of biomaterials for use into the central nervous system. Many biomaterials have been engineered based on natural compounds, synthetic compounds, or a mix of both with the aim of providing polymers with specific properties. The mechanical properties of biomaterials can be exquisitely regulated forming polymers with different stiffness, modifiable physical state that polymerizes in situ, or small particles encapsulating cells or growth factors. The choice of biomaterial compounds should be adapted for the different applications, structure target, and delay of administration. Biocompatibilities with embedded cells and with the host tissue and biodegradation rate must be considerate. In this paper, we review the different applications of biomaterials combined with cell therapy in ischemic stroke and we explore specific features such as choice of biomaterial compounds and physical and mechanical properties concerning the recent studies in experimental stroke.

13.
Behav Brain Res ; 244: 82-9, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23403282

ABSTRACT

Stroke causes disability and mortality worldwide and is divided into ischemic and hemorrhagic subtypes. Although clinical trials suggest distinct recovery profiles for ischemic and hemorrhagic events, this is not conclusive due to stroke heterogeneity. The aim of this study was to produce similar brain damage, using experimental models of ischemic (IS) and hemorrhagic (HS) stroke and evaluate the motor spontaneous recovery profile. We used 31 Wistar rats divided into the following groups: Sham (n=7), ischemic (IS) (n=12) or hemorrhagic (HS) (n=12). Brain ischemia or hemorrhage was induced by endotelin-1 (ET-1) and collagenase type IV-S (collagenase) microinjections, respectively. All groups were evaluated in the open field, cylinder and ladder walk behavioral tests at distinct time points as from baseline to 30 days post-surgery (30 PS). Histological and morphometric analyses were used to assess the volume of lost tissue and lesion length. Present results reveal that both forms of experimental stroke had a comparable long-term pattern of damage, since no differences were found in volume of tissue lost or lesion size 30 days after surgery. However, behavioral data showed that hemorrhagic rats were less impaired at skilled walking than ischemic ones at 15 and 30 days post-surgery. We suggest that experimentally comparable stroke design is useful because it reduces heterogeneity and facilitates the assessment of neurobiological differences related to stroke subtypes; and that spontaneous skilled walking recovery differs between experimental ischemic and hemorrhagic insults.


Subject(s)
Brain Ischemia/psychology , Brain/pathology , Intracranial Hemorrhages/psychology , Recovery of Function , Stroke/pathology , Stroke/psychology , Animals , Brain Ischemia/chemically induced , Brain Ischemia/complications , Brain Ischemia/pathology , Collagenases/administration & dosage , Endothelin-1/administration & dosage , Intracranial Hemorrhages/chemically induced , Intracranial Hemorrhages/complications , Intracranial Hemorrhages/pathology , Male , Microinjections , Motor Activity/drug effects , Motor Skills/drug effects , Rats , Stroke/complications , Stroke/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...