Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(31): 15505-15513, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31315975

ABSTRACT

TGFß family ligands, which include the TGFßs, BMPs, and activins, signal by forming a ternary complex with type I and type II receptors. For TGFßs and BMPs, structures of ternary complexes have revealed differences in receptor assembly. However, structural information for how activins assemble a ternary receptor complex is lacking. We report the structure of an activin class member, GDF11, in complex with the type II receptor ActRIIB and the type I receptor Alk5. The structure reveals that receptor positioning is similar to the BMP class, with no interreceptor contacts; however, the type I receptor interactions are shifted toward the ligand fingertips and away from the dimer interface. Mutational analysis shows that ligand type I specificity is derived from differences in the fingertips of the ligands that interact with an extended loop specific to Alk4 and Alk5. The study also reveals differences for how TGFß and GDF11 bind to the same type I receptor, Alk5. For GDF11, additional contacts at the fingertip region substitute for the interreceptor interactions that are seen for TGFß, indicating that Alk5 binding to GDF11 is more dependent on direct contacts. In support, we show that a single residue of Alk5 (Phe84), when mutated, abolishes GDF11 signaling, but has little impact on TGFß signaling. The structure of GDF11/ActRIIB/Alk5 shows that, across the TGFß family, different mechanisms regulate type I receptor binding and specificity, providing a molecular explanation for how the activin class accommodates low-affinity type I interactions without the requirement of cooperative receptor interactions.


Subject(s)
Activins/chemistry , Activins/metabolism , Multiprotein Complexes/metabolism , Receptors, Transforming Growth Factor beta/chemistry , Receptors, Transforming Growth Factor beta/metabolism , Animals , Bone Morphogenetic Proteins/metabolism , Humans , Mice , Models, Molecular , Multiprotein Complexes/chemistry , Rats , Transforming Growth Factor beta/metabolism
2.
Pharm Res ; 31(3): 635-48, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24190631

ABSTRACT

PURPOSE: Study the impact of CXCL13 neutralization on germinal center (GC) response in vivo, and build quantitative relationship between target coverage and pharmacological effects at the target tissue. METHODS: An anti-CXCL13 neutralizing monoclonal antibody was dosed in vivo in a T-dependent mouse immunization (TDI) model. A quantitative site-of-action (SoA) model was developed to integrate antibody PK and total CXCL13 levels in serum and spleen towards estimating target coverage as a function of dose. To aid in the SoA model development, a radio-labeled study using [I(125)] CXCL13 was conducted in mice. Model estimated target coverage was linked to germinal center response using a sigmoidal inhibitory effect model. RESULTS: In vivo studies demonstrated that CXCL13 inhibition led to an architectural change in B-cell follicles, dislocation of GCs and a significant reduction in the GC absolute numbers per square area (GC/mm(2)). The SoA modeling analysis indicated that ~79% coverage in spleen was required to achieve 50% suppression of GC/mm(2). The 3 mg/kg dose with 52% spleen coverage resulted in no PD suppression, whereas 30 mg/kg with 93% coverage achieved close to maximum PD suppression, highlighting the steepness of PD response. CONCLUSIONS: This study showcases an application of SoA modeling towards a quantitative understanding of CXCL13 pharmacology.


Subject(s)
Antibodies, Neutralizing/pharmacology , Chemokine CXCL13/immunology , Germinal Center/drug effects , T-Lymphocytes/immunology , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Female , Germinal Center/immunology , Germinal Center/ultrastructure , Immunization , Mice , Mice, Inbred C57BL , Models, Biological , Rats , Rats, Sprague-Dawley , Spleen/drug effects , Spleen/immunology , T-Lymphocytes/drug effects
3.
MAbs ; 5(6): 882-95, 2013.
Article in English | MEDLINE | ID: mdl-23995618

ABSTRACT

While myriad molecular formats for bispecific antibodies have been examined to date, the simplest structures are often based on the scFv. Issues with stability and manufacturability in scFv-based bispecific molecules, however, have been a significant hindrance to their development, particularly for high-concentration, stable formulations that allow subcutaneous delivery. Our aim was to generate a tetravalent bispecific molecule targeting two inflammatory mediators for synergistic immune modulation. We focused on an scFv-Fc-scFv format, with a flexible (A4T)3 linker coupling an additional scFv to the C-terminus of an scFv-Fc. While one of the lead scFvs isolated directly from a naïve library was well-behaved and sufficiently potent, the parental anti-CXCL13 scFv 3B4 required optimization for affinity, stability, and cynomolgus ortholog cross-reactivity. To achieve this, we eschewed framework-based stabilizing mutations in favor of complementarity-determining region (CDR) mutagenesis and re-selection for simultaneous improvements in both affinity and thermal stability. Phage-displayed 3B4 CDR-mutant libraries were used in an aggressive "hammer-hug" selection strategy that incorporated thermal challenge, functional, and biophysical screening. This approach identified leads with improved stability and>18-fold, and 4,100-fold higher affinity for both human and cynomolgus CXCL13, respectively. Improvements were exclusively mediated through only 4 mutations in VL-CDR3. Lead scFvs were reformatted into scFv-Fc-scFvs and their biophysical properties ranked. Our final candidate could be formulated in a standard biopharmaceutical platform buffer at 100 mg/ml with<2% high molecular weight species present after 7 weeks at 4 °C and viscosity<15 cP. This workflow has facilitated the identification of a truly manufacturable scFv-based bispecific therapeutic suitable for subcutaneous administration.


Subject(s)
Antibodies, Bispecific/genetics , Complementarity Determining Regions/genetics , Protein Engineering , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/metabolism , Animals , Bacteriophages/genetics , Enzyme-Linked Immunosorbent Assay , Female , Humans , Injections, Subcutaneous , Peptide Library , Protein Stability , Rats , Single-Chain Antibodies/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL