Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1865(11): 129969, 2021 11.
Article in English | MEDLINE | ID: mdl-34352343

ABSTRACT

BACKGROUND: Mechanisms governing localization, trafficking and signaling of G protein-coupled receptors (GPCRs) are critical in cell function. Protein-protein interactions are determinant in these processes. However, there are very little interacting proteins known to date for the DP1 receptor for prostaglandin D2. METHODS: We performed LC-MS/MS analyses of the DP1 receptor interactome in HEK293 cells. To functionally validate our LC-MS/MS data, we studied the implications of the interaction with the IQGAP1 scaffold protein in the trafficking and signaling of DP1. RESULTS: In addition to expected interacting proteins such as heterotrimeric G protein subunits, we identified proteins involved in signaling, trafficking, and folding localized in various cell compartments. Endogenous DP1-IQGAP1 co-immunoprecipitation was observed in colon cancer HT-29 cells. The interaction was augmented by DP1 agonist activation in HEK293 cells and GST-pulldown assays showed that IQGAP1 binds to intracellular loops 2 and 3 of DP1. Co-localization of the two proteins was observed by confocal microscopy at the cell periphery and in intracellular vesicles in the basal state. PGD2 treatment resulted in the redistribution of the DP1-IQGAP1 co-localization in the perinuclear vicinity. DP1 receptor internalization was promoted by overexpression of IQGAP1, while it was diminished by IQGAP1 knockdown with DsiRNAs. DP1-mediated ERK1/2 activation was augmented and sustained overtime by overexpression of IQGAP1 when compared to DP1 expressed alone. IQGAP1 knockdown decreased ERK1/2 activation by DP1 stimulation. Interestingly, ERK1/2 signaling by DP1 was increased when IQGAP2 was silenced, while it was impaired by IQGAP3 knockdown. CONCLUSIONS: Our findings define the putative DP1 interactome, a patho-physiologically important receptor, and validated the interaction with IQGAP1 in DP1 function. Our data also reveal that IQGAP proteins may differentially regulate GPCR signaling. GENERAL SIGNIFICANCE: The identified putative DP1-interacting proteins open multiple lines of research in DP1 and GPCR biology in various cell compartments.


Subject(s)
Prostaglandin D2/metabolism , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , ras GTPase-Activating Proteins/metabolism , Cells, Cultured , Humans , Signal Transduction
2.
J Struct Biol ; 212(1): 107582, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32707235

ABSTRACT

Rab4a is a small GTPase associated with endocytic compartments and a key regulator of early endosomes recycling. Gathering evidence indicates that its expression and activation are required for the development of metastases. Rab4a-intrinsic GTPase properties that control its activity, i.e. nucleotide exchange and hydrolysis rates, have not yet been thoroughly studied. The determination of these properties is of the utmost importance to understand its functions and contributions to tumorigenesis. Here, we used the constitutively active (Rab4aQ67L) and dominant negative (Rab4aS22N) mutants to characterize the thermodynamical and structural determinants of the interaction between Rab4a and GTP (GTPγS) as well as GDP. We report the first 1H, 13C, 15N backbone NMR assignments of a Rab GTPase family member with Rab4a in complex with GDP and GTPγS. We also provide a qualitative description of the extent of structural and dynamical changes caused by the Q67L and S22N mutations. Using a real-time NMR approach and the two aforementioned mutants as controls, we evaluated Rab4a intrinsic nucleotide exchange and hydrolysis rates. Compared to most small GTPases such as Ras, a rapid GTP exchange rate along with slow hydrolysis rate were observed. This suggests that, in a cellular context, Rab4a can self-activate and persist in an activated state in absence of regulatory mechanisms. This peculiar profile is uncommon among the Ras superfamily members, making Rab4a an atypical fast-cycling GTPase and may explain, at least in part, how it contributes to metastases.


Subject(s)
GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/metabolism , Nucleotides/chemistry , Nucleotides/metabolism , Cell Line, Tumor , HeLa Cells , Humans , Hydrolysis , Kinetics , Magnetic Resonance Spectroscopy/methods
3.
Cell Signal ; 72: 109641, 2020 08.
Article in English | MEDLINE | ID: mdl-32334026

ABSTRACT

Mechanisms controlling the recycling of G protein-coupled receptors (GPCRs) remain largely unclear. We report that GGA3 (Golgi-associated, γ adaptin ear containing, ADP-ribosylation factor-binding protein 3) regulates the recycling and signaling of the PGD2 receptor DP1 through a new mechanism. An endogenous interaction between DP1 and GGA3 was detected by co-immunoprecipitation in HeLa cells. The interaction was promoted by DP1 agonist stimulation, which was supported by increased DP1-GGA3 colocalization in confocal microscopy. Pulldown assays showed that GGA3 interacts with the intracellular loop 2 and C-terminus of DP1, whereas the receptor interacts with the VHS domain of GGA3. The Arf-binding deficient GGA3 N194A mutant had the same effect as wild-type GGA3 on DP1 trafficking, suggesting a new mechanism for GGA3 in recycling. Depletion of Rab4 inhibited the GGA3 effect on DP1 recycling, revealing a Rab4-dependent mechanism. Interestingly, depletion of L-PGDS (L-type prostaglandin synthase, the enzyme that produces the agonist for DP1) impaired the ability of GGA3 to mediate DP1 recycling, while GGA3 knockdown prevented L-PGDS from promoting DP1 recycling, indicating that both proteins function interdependently. A novel interaction was observed between co-immunoprecipitated endogenous L-PGDS and GGA3 proteins in HeLa cells, and in vitro using purified recombinant proteins. Redistribution of L-PGDS towards GGA3- and Rab4-positive vesicles was induced by DP1 activation. Silencing of GGA3 inhibited ERK1/2 activation following DP1 stimulation. Altogether, our data reveal a novel function for GGA3, in a newly described association with L-PGDS, in the recycling and signaling of a GPCR, namely DP1.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Endocytosis , Intramolecular Oxidoreductases/metabolism , Lipocalins/metabolism , Prostaglandin D2/metabolism , Receptors, Prostaglandin/metabolism , Signal Transduction , rab4 GTP-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , MAP Kinase Signaling System , Protein Binding , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...