Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1408: 217-26, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26195034

ABSTRACT

Supercritical fluid chromatography (SFC) is a very useful tool in the purpose of impurity profiling of drug candidates, as an adequate selection of stationary phases can provide orthogonal separations so as to maximize the chances to see all impurities. The purpose of the present work is to develop a method for chemical purity assessment. The first part, presented here, focuses on mobile phase selection to ensure adequate elution and detection of drug-like molecules, while the second part focuses on stationary phase selection for optimal separation and orthogonality. The use of additives in the carbon dioxide - solvent mobile phase in SFC is now commonplace, and enables in particular to increase the number of eluted compounds and to improve peak shapes. The objective of this first part was to test different additives (acids, bases, salts and water) for their chromatographic performance assessed in gradient elution with a diode-array detector, but also for the mass responses obtained with a single-quadrupole mass detector, equipped with an electrospray ionization source (Waters ACQUITY QDa). In this project, we used a selection of one hundred and sixty compounds issued from Servier Research Laboratories to screen a set of columns and additives in SFC with a Waters ACQUITY UPC(2) system. The selected columns were all high-performance columns (1.7-1.8µm with totally porous particles or 2.6-2.7µm with superficially porous particles) with a variety of stationary phase chemistries. Initially, eight additives dissolved in the methanol co-solvent were tested on a UPC(2) ACQUITY UPC(2) HSS C18 SB column. A Derringer desirability function was used to classify the additives according to selected criteria: elution capability, peak shapes, UV baseline drift, and UV and mass responses (signal-to-noise ratios). Following these tests, the two best additives (ammonium acetate and ammonium hydroxide) were tested on a larger number of columns (10) where the two additives appeared to provide very comparable overall scores. However, ammonium acetate was selected for slightly better chromatographic quality. In a second step, we investigated the effects of ammonium acetate concentration (between 0 and 25mM in the methanol co-solvent) on retention and peak efficiency. Two types of silica supports were tested by working with ACQUITY UPC(2) HSS C18 SB and BEH columns. 20mM ammonium acetate in methanol with 2% water was finally selected as the best co-solvent composition.


Subject(s)
Chromatography, Supercritical Fluid/methods , Acetates , Carbon Dioxide , Drug Contamination , Mass Spectrometry , Methanol , Pharmaceutical Preparations/chemistry , Porosity , Signal-To-Noise Ratio , Silicon Dioxide , Solvents , Spectrophotometry, Ultraviolet , Stereoisomerism
2.
J Chromatogr A ; 1408: 227-35, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26195036

ABSTRACT

Impurity profiling of organic products that are synthesized as possible drug candidates requires complementary analytical methods to ensure that all impurities are identified. Supercritical fluid chromatography (SFC) is a very useful tool to achieve this objective, as an adequate selection of stationary phases can provide orthogonal separations so as to maximize the chances to see all impurities. In this series of papers, we have developed a method for achiral SFC-MS profiling of drug candidates, based on a selection of 160 analytes issued from Servier Research Laboratories. In the first part of this study, focusing on mobile phase selection, a gradient elution with carbon dioxide and methanol comprising 2% water and 20mM ammonium acetate proved to be the best in terms of chromatographic performance, while also providing good MS response [1]. The objective of this second part was the selection of an orthogonal set of ultra-high performance stationary phases, that was carried out in two steps. Firstly, a reduced set of analytes (20) was used to screen 23 columns. The columns selected were all 1.7-2.5µm fully porous or 2.6-2.7µm superficially porous particles, with a variety of stationary phase chemistries. Derringer desirability functions were used to rank the columns according to retention window, column efficiency evaluated with peak width of selected analytes, and the proportion of analytes successfully eluted with good peak shapes. The columns providing the worst performances were thus eliminated and a shorter selection of columns (11) was obtained. Secondly, based on 160 tested analytes, the 11 columns were ranked again. The retention data obtained on these columns were then compared to define a reduced set of the best columns providing the greatest orthogonality, to maximize the chances to see all impurities within a limited number of runs. Two high-performance columns were thus selected: ACQUITY UPC(2) HSS C18 SB and Nucleoshell HILIC.


Subject(s)
Chromatography, Supercritical Fluid/methods , Carbon Dioxide , Chromatography, Supercritical Fluid/instrumentation , Drug Contamination , Mass Spectrometry , Methanol , Pharmaceutical Preparations/chemistry , Porosity , Solvents , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...