Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Viruses ; 16(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38932191

ABSTRACT

The diversity of Geminiviridae and Alphasatellitidae species in tomatoes was assessed via high-throughput sequencing of 154 symptomatic foliar samples collected from 2002 to 2017 across seven Brazilian biomes. The first pool (BP1) comprised 73 samples from the North (13), Northeast (36), and South (24) regions. Sixteen begomoviruses and one Topilevirus were detected in BP1. Four begomovirus-like contigs were identified as putative novel species (NS). NS#1 was reported in the semi-arid (Northeast) region and NS#2 and NS#4 in mild subtropical climates (South region), whereas NS#3 was detected in the warm and humid (North) region. The second pool (BP2) comprised 81 samples from Southeast (39) and Central-West (42) regions. Fourteen viruses and subviral agents were detected in BP2, including two topileviruses, a putative novel begomovirus (NS#5), and two alphasatellites occurring in continental highland areas. The five putative novel begomoviruses displayed strict endemic distributions. Conversely, tomato mottle leaf curl virus (a monopartite species) displayed the most widespread distribution occurring across the seven sampled biomes. The overall diversity and frequency of mixed infections were higher in susceptible (16 viruses + alphasatellites) in comparison to tolerant (carrying the Ty-1 or Ty-3 introgressions) samples, which displayed 9 viruses. This complex panorama reinforces the notion that the tomato-associated Geminiviridae diversity is yet underestimated in Neotropical regions.


Subject(s)
Geminiviridae , Metagenomics , Phylogeny , Plant Diseases , Solanum lycopersicum , Solanum lycopersicum/virology , Brazil , Plant Diseases/virology , Geminiviridae/genetics , Geminiviridae/classification , Geminiviridae/isolation & purification , Animals , Genetic Variation , Genome, Viral , Begomovirus/genetics , Begomovirus/classification , High-Throughput Nucleotide Sequencing
2.
J Appl Microbiol ; 135(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38373804

ABSTRACT

AIM: An extensive survey was done to clarify the prevalent Stemphylium species on Solanaceae plants across Brazil, and their host ranges. METHODS AND RESULTS: Eighty nine (89) Stemphylium isolates were obtained from naturally infected tomatoes as well as S. paniculatum, potato, eggplant, scarlet eggplant (Solanum aethiopicum var. gilo), Physalis angulata, and Capsicum species. Phylogenetic analyses encompassing the ITS-5.8S rDNA and glyceraldehyde-3-phosphate dehydrogenase genomic regions placed the isolates into two distinct groupings with either Stemphylium lycopersici or S. solani. Isolates of S. lycopersici (n = 81) were obtained infecting tomato, potato, eggplant, S. paniculatum, and P. angulata. Isolates of S. solani (n = 8) were detected in natural association with scarlet eggplant and tomato. Two isolates of S. lycopersici displayed a wide experimental host range in greenhouse bioassays, infecting accessions of 12 out of 18 species. Ocimum basilicum (Lamiaceae) was the only experimental host outside the Solanaceae family.


Subject(s)
Capsicum , Mitosporic Fungi , Solanum lycopersicum , Solanum tuberosum , Brazil , Phylogeny , Vegetables
3.
Plant Dis ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37115559

ABSTRACT

Eggplant (Solanum melongena L.) is an economically important vegetable crop in Brazil, especially in family-based farming. Eggplant hybrids 'Ciça' and 'Napoli' (≈ 400 plants) were detected exhibiting virus-like symptoms (5-20% incidence) in field surveys (2015-2018) in Brasília-DF (Figure 1). Symptoms included chlorosis, mosaic and apical leaf deformation. Six symptomatic leaf samples were collected from fruit-bearing plants (around 100 days after planting) aiming at verifying the potential orthotospovirus infection. Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was carried out with polyclonal antibodies (produced at Centro Nacional de Pesquisa de Hortaliças - CNPH) against the N gene coat protein of the three major orthotospoviruses: tomato spotted wilt orthotospovirus (TSWV), groundnut ringspot orthotospovirus (GRSV) and, tomato chlorotic spot orthotospovirus (TCSV). Strong serological reactions were observed only against GRSV antibodies in the extracts from symptomatic samples, but not in the controls. To confirm the causal agent of those symptoms, total RNA was extracted from infected leaf samples via the standard Trizol® (Sigma) protocol and subsequently used in a two-step reverse transcriptase polymerase chain reaction (RT-PCR) approach. Synthesis of the cDNA was carried out with the J13 primer (5'-CCC GGA TCC AGA GCA AT-3') (Cortez et al., 2001) followed by PCR assays with the primer pair BR60 (5'-AGA GCA ATC GTG TCA-3`) and BR65 (5`-ATC AAG CCT TCT GAA AGT CAT-3') (Eiras et al., 2002). This primer set amplifies a fragment of 453 bp including the 3' untranslated region at the 3' terminus of the S RNA and the protein N-coding gene of at least five species: TSWV, GRSV, TCSV, chrysanthemum stem necrosis orthotospovirus (CSNV) and zucchini lethal chlorosis orthotospovirus (ZLCV). In addition, GRSV-specific primers (LNA Reis, unpublished) were used for amplification of all three segments: L segment: LF/LR (5'-AAC AGG ATT CAG CAA TAT GG-3'/ 5'-AAT TCC TTG AAG ACA ATT GTG T -3'); M segment: MF/MR (5'-TTT GTC CAA CCA TAC CAG ACC C- 3' / 5'-GGC TTC AAT AAA GGC TTG GG-3') and, S segment: SF/SR (5'-TTC AAA CTC AGT TGT ACT CTG A-3'/5'-TTA CTT TCG ATC TGG TTG AA- 3'). Amplicons with 509 bp (MT043204), 289 bp (MT043205), and 901 bp (MT043203) were obtained for L, M and S segments of the eggplant isolate DF-687. PCR amplicons corresponding to a segment of the N-coding gene (396 bp) of a second eggplant isolate (BJL02; MK176337) were obtained with the primer pair BR60/BR65 and subjected to Sanger dideoxy sequencing at CNPH. Alignments of nucleotide sequences of both isolates revealed identity levels varying around 99% to the corresponding genomic regions of a large set of GRSV isolates from GenBank database. PCR assays using total RNA as template yielded 494 bp amplicons solely with GRSV-specific primers (Webster et al., 2011), but no products were obtained with TSWV-specific primers (Adkins and Rosskopf, 2002), confirming the former as the sole causal agent of the field symptoms. Leaves of eggplant cv. 'Ciça' and indicator hosts, including Nicotiana rustica, Capsicum chinense 'PI 159236' (with the Tsw gene), and S. lycopersicum cv. Santa Clara were rub inoculated with extracts prepared from eggplant samples naturally infected with GRSV. Mosaic, necrotic ringspots and systemic leaf deformation symptoms were observed around ten days after inoculation on newly emerged leaves of all inoculated plants. GRSV infection was confirmed by DAS-ELISA and RT-PCR ten days after inoculation. Eggplant was erroneously listed as a host of GRSV in Brazil (Kitajima, 2020). Hence, this is the first report of eggplant infection by this virus in South America. No significant yield losses have been observed in eggplant due to GRSV infection since the overall symptoms are often mild. However, this natural host of GRSV might impact disease management strategies since eggplant is quite often cultivated under family-based farming conditions as a companion crop of highly susceptible tomato, sweet-pepper, and lettuce cultivars. References: Adkins, S., and Rosskopf, E. N. 2002. Plant Dis. 86: 1310. Cortez, I., et al. 2001. Arch. Virol. 146:265. Eiras, M. et al., 2002. Fitopatol. Bras. 27:285. Kitajima, E.W. 2020. Biota Neotrop. 20: e2019932. Webster, C. G., et al. 2011. Virology 413: 216.

4.
Neotrop Entomol ; 50(2): 258-268, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33666863

ABSTRACT

Tomato (Solanum lycopersicum L.) is a natural host for the Helicoverpa-Chloridea (Lepidoptera: Noctuidae: Heliothinae) pest complex. The species Helicoverpa armigera (Hübner) was responsible for significant yield losses in several crops after its detection in Brazil. The morphology of its larval stage resembles common Heliothinae species, making pest control decisions difficult. The overall lack of studies on the Heliothinae associated with tomatoes in Brazil and the establishment of H. armigera in the country plus their recent outbreaks supported our investigation about the relative importance of the insects from the Helicoverpa-Chloridea complex in this vegetable crop. A nationwide survey was carried out across fresh-market and processing tomato fields. Molecular analyses targeting a segment of the mitochondrial cytochrome oxidase subunit I (mtCOI) gene and their sequence analyses indicated the presence of a pest complex, comprising the introduced species H. armigera and the indigenous species, Helicoverpa zea (Boddie), and Chloridea virescens (Fabricius). The Harm 1 haplotype of H. armigera was identified as the predominant Heliothinae pest infesting fresh-market tomatoes. The New World species Chloridea subflexa (Guenée) as well as the exotic Solanaceae-specific species Helicoverpa assulta (Guenée) were not found in our survey. Additional larvae surveys in processing tomato fields during 2013/2014 in Central Brazil also indicated H. armigera as the most abundant Heliothinae species (95%) together with H. zea (4.75%) and C. virescens (0.25%). The occurrence of distinct Helicoverpa species (which are potentially capable of interbreeding) indicates that novel crop management strategies will be necessary in order to minimize damages caused by this pest complex in tomatoes.


Subject(s)
Moths , Solanum lycopersicum , Animals , Brazil , Haplotypes , Larva , Moths/genetics
5.
Plant Dis ; 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33054625

ABSTRACT

Endive (Cichorium endivia L.) is a very important cash crop for small farmers in Brazil. During inspections conducted in the summer season of 2019-2020, leaf samples of C. endivia 'La Spezia' seedlings exhibiting typical symptoms of orthotospoviruses infection (viz. concentric chlorotic spots and apical leaf deformation; ≈ 10%) were collected in commercial greenhouses in Brasília-DF, Central Brazil. Leaves of one healthy and three symptomatic plants were initially evaluated via double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) with polyclonal antibodies (produced at CNPH) raised against the nucleoprotein of the three major orthotospoviruses: tomato spotted wilt orthotospovirus (TSWV), groundnut ringspot orthotospovirus (GRSV) and tomato chlorotic spot orthotospovirus (TCSV). Strong serological reactions were observed only against GRSV antibodies exclusively in extracts from symptomatic samples. In order to confirm the causal agent of those symptoms, total RNA was extracted (Trizol®; Sigma) from infected leaf samples and used in a two-step reverse transcriptase polymerase chain reaction (RT-PCR) approach. Synthesis of the cDNA was carried out with the J13 primer (5'-CCC GGA TCC AGA GCA AT-3') (Cortez et al., 2001) followed by PCR assays with the primer pair BR60 (5'-AGA GCA ATC GTG TCA-3`) and BR65 (5'-ATC AAG CCT TCT GAA AGT CAT-3') (Eiras et al., 2001). This primer set amplifies a fragment of 453 bp including the untranslated region at the 3' terminus of the small RNA and the protein N-coding gene of at least five orthotospoviruses: TSWV, GRSV, TCSV, chrysanthemum stem necrosis orthotospovirus (CSNV) and zucchini lethal chlorosis orthotospovirus (ZLCV) (Eiras et al., 2001). The obtained amplicons (≈ 432 bp) were subsequently subjected to Sanger dideoxy nucleotide sequencing at CNPH. BLASTn analysis showed >99% identity with a wide array of GRSV isolates available in the GenBank. The nucleotide sequence of Tospo #1 (MT215222) and Tospo #3 (MT215224) isolates displayed 100% identity between them, whereas the Tospo #2 (MT215223) isolate displayed one non-synonymous point mutation in the 3' untranslated region in comparison with the former two isolates. Three plants of C. endivia, Capsicum annuum L. cv. Ikeda, tomato (Solanum lycopersicum L.) cv. Santa Clara and its isoline 'LAM-147' (with the Sw-5 resistance gene), Nicotiana rustica L., Lactuca sativa L. ('Vanda' and 'PI-342444') and Gomphrena globosa L. were mechanically inoculated individually with each GRSV isolate in order to confirm their pathogenicity. Chlorotic lesions and mosaic were observed seven days after inoculation of all plant materials, except the tomato inbred line 'LAM-147', which has the Sw-5 gene that confers broad-spectrum resistance to all Brazilian orthotospoviruses (Boiteux and Giordano, 1993). The GRSV infection was confirmed via DAS-ELISA and RT-PCR 15 days after inoculation, using the same set of antibodies and the primer pair BR60 / BR65. Transmission electron microscopy of ultrathin sections from symptomatic leaf tissues, both from field-infected and experimentally inoculated endive revealed the presence of typical orthotospovirus particles, within endoplasmic reticulum cisternae. Natural infection of endive by TSWV has been reported in Greece (Chatzivassiliou et al., 2000) and by TCSV in São Paulo State, Brazil and in Florida, USA (Subramanya Sastry et al., 2019). To our knowledge, it is the first report of GRSV naturally infecting this Asteraceae species in Brazil. Confirmation of GRSV infection of C. endivia plants is a relevant piece of information aiming to design effective disease management strategies. References: Boiteux, L.S. and Giordano, L. B. 1993. Euphytica 71: 151. Eiras, M. et al. 2001. Fitopatol. Bras. 26: 170. Chatzivassiliou, E.K. et al. 2000 Ann. Appl. Biol. 137: 127. Cortez, I., et al. 2001. Arch. Virol. 146: 265. Subramanya Sastry, K., et al. 2019. Encyclopedia of plant viruses and viroids. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3912-3.

6.
Plant Dis ; 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32886042

ABSTRACT

Severe yield losses induced by a complex of whitefly-transmitted Begomovirus species (family Geminiviridae) have been reported in tomatoes in Brazil (Reis et al. 2020). Nine isolates were obtained from tomato plants exhibiting begomovirus-like symptoms (viz. apical and interveinal chlorosis, yellow spots, and stunting) during independent field surveys: one isolate in Sumaré, São Paulo-SP State (isolate SP-066) in 2001, two in Serra Negra, Minas Gerais-MG (MG-012 and MG-016) in 2002, five in Caxias do Sul, Rio Grande do Sul-RS (RS-039, RS-045, RS-046, RS-047 and RS-058) in 2011 and one in Domingos Martins, Espírito Santo-ES (ES-148) in 2016. Disease incidence across all sampled fields ranged from 30% (in Domingos Martins-ES) to 90% in Sumaré-SP. Total DNA extraction was done by a modified CTAB method (Boiteux et al., 1999). Begomovirus infection was confirmed in all isolates by selective amplification of viral DNA-A segments using the primer pairs 'PAL1v1978 / PAR1c496' (Rojas et al., 1993) and 'BegomoAFor1' / 'BegomoARev1' (Ha et al., 2006), which produce two large and non-overlapping segments (≈1120 bp and ≈1205 bp, respectively). These PCR amplicons were initially characterized via direct Sanger dideoxy sequencing at CNPH. BLASTn analysis of the partial DNA-A genomes of these nine isolates indicated identity levels of 95-97% to three euphorbia yellow mosaic virus (EuYMV) reference isolates (= KY559532, JF756674, and KY559583) found infecting the weed Euphorbia heterophylla L. The entire DNA-A (2,609 nts = MN746971) and DNA-B (2,579 nts = MN746970) components of the MG-016 isolate were obtained via high-performance sequencing using Illumina HiSeq 2500 system (Macrogen Inc., South Korea). Sequences were assembled with the CLC Genomics Workbench program 10. Contigs were validated by BLASTx and BLASTn and compared to the ssDNA virus database at NCBI (www.ncbi.nlm.nih.gov). The fully-characterized MG-016 isolate displayed identity levels ranging from 97 to 99% to the EuYMV reference isolates as well as similar genomic features such as the conserved TATA box, nonanucleotide, and iterons (that were in agreement with a cognate nature of the DNA-A and DNA-B components). A partial sequence of the DNA-B genome was also obtained for the MG-012 isolate (MT7831942). The isolates MG-012 and MG-016 were found in mixed infections with tomato severe rugose virus (ToSRV) and tomato golden vein virus (TGVV), respectively. In addition, the complete DNA-A genomes of ES-148 (MN746972) and SP-066 (MN782438) were also obtained via a combination of primer walking and Sanger dideoxy sequencing, displaying 96-98% identity to EuYMV isolates. To our knowledge, this is the first report of multiple and independent events of natural infection of tomatoes by EuYMV isolates. Our results confirm the natural host status of tomatoes to EuYMV isolates as indicated in previous infectivity assays using biolistic inoculation (Barreto et al., 2013). The weed E. heterophylla is widely disseminated and very often present within tomato fields due to its higher levels of tolerance to the major herbicide (metribuzin) employed in this crop. Therefore, this weed may act as a persistent reservoir of tomato-infecting EuYMV isolates, which may allow the selection of viral populations potentially more adapted to this vegetable crop.

7.
Viruses ; 12(8)2020 07 28.
Article in English | MEDLINE | ID: mdl-32731641

ABSTRACT

A complex of begomoviruses (Geminiviridae) can cause severe tomato yield losses in the neotropics. Here, next-generation sequencing was employed for large-scale assessment of single-stranded (ss)DNA virus diversity in tomatoes either harboring or lacking the large-spectrum begomovirus tolerance Ty-1 gene. Individual leaf samples exhibiting begomovirus-like symptoms (n = 107) were field-collected, circular DNA-enriched, subdivided into pools (with and without Ty-1), and Illumina-sequenced. Virus-specific PCR and Sanger dideoxy sequencing validations confirmed 15 distinct ssDNA virus/subviral agents (occurring mainly in mixed infections), which highlight the potential drawbacks of employing virus-specific resistance in tomato breeding. More viruses (14 versus 6 species) were observed in tomatoes without the Ty-1 gene. A gemycircularvirus (Genomoviridae), a new alpha-satellite, and two novel Begomovirus species were identified exclusively in samples without the Ty-1 gene. A novel begomovirus was found only in the Ty-1 pool, being the only species associated with severe symptoms in Ty-1 plants in our survey. Our work is the first step towards the elucidation of the potential begomovirus adaptation to Ty-1 and its specific filtering effects on a subset of ssDNA viral/subviral agents.


Subject(s)
Begomovirus/classification , Genes, Plant , Metagenomics , Plant Diseases/virology , Solanum lycopersicum/virology , Begomovirus/isolation & purification , DNA, Single-Stranded , High-Throughput Nucleotide Sequencing , Solanum lycopersicum/genetics , Plant Leaves/virology , Tropical Climate
8.
Mol Plant Pathol ; 17(9): 1442-1454, 2016 12.
Article in English | MEDLINE | ID: mdl-27271212

ABSTRACT

Only a limited number of dominant resistance genes acting against plant viruses have been cloned, and further functional studies of these have been almost entirely limited to the resistance genes Rx against Potato virus X (PVX) and N against Tobacco mosaic virus (TMV). Recently, the cell-to-cell movement protein (NSM ) of Tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant (Avr) of Sw-5b-mediated resistance, a dominant resistance gene which belongs to the class of SD-CC-NB-LRR (Solanaceae domain-coiled coil-nucleotide-binding-leucine-rich repeat, SD-CNL) resistance genes. On transient expression of the NSM protein in tomato and transgenic Nicotiana benthamiana harbouring the Sw-5b gene, a hypersensitive cell death response (HR) is triggered. Here, it is shown that high accumulation of the Sw-5b protein in N. benthamiana leaves, achieved by co-expression of the Sw-5b protein with RNA silencing suppressors (RSSs), leads to auto-activity in the absence of NSM . In a similar approach, Sw-5a, the highest conserved paralogue of Sw-5b from Solanum peruvianum, also triggered HR by auto-activation, whereas the highest conserved orthologue from susceptible S. lycopersicum, named Sw-5aS , did not. However, neither of the last two homologues was able to trigger an NSM -dependent HR. Truncated and mutated versions of these Sw-5 proteins revealed that the NB-ARC [nucleotide-binding adaptor shared by Apaf-1 (from humans), R proteins and CED-4 (from nematodes)] domain is sufficient for the triggering of HR and seems to be suppressed by the SD-CC domain. Furthermore, a single mutation was sufficient to restore auto-activity within the NB-ARC domain of Sw-5aS . When the latter domain was fused to the Sw-5b LRR domain, NSM -dependent HR triggering was regained, but not in the presence of its own Sw-5aS LRR domain. Expression analysis in planta revealed a nucleocytoplasmic localization pattern of Sw-5b, in which the SD-CC domain seems to be required for nuclear translocation. Although the Sw-5 N-terminal CC domain, in contrast with Rx, contains an additional SD, most findings from this study support a conserved role of domains within NB-LRR (NLR) proteins against plant viruses.


Subject(s)
Disease Resistance , Plant Diseases/virology , Plant Proteins/metabolism , Solanum lycopersicum/virology , Tospovirus/physiology , Amino Acid Sequence , Amino Acids , Cell Death , Cell Nucleus/metabolism , Disease Susceptibility , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Models, Molecular , Mutation/genetics , Plant Proteins/chemistry , Plant Viral Movement Proteins/metabolism , Plants, Genetically Modified , Protein Domains , Protein Transport , Subcellular Fractions/metabolism , Nicotiana/genetics , Nicotiana/virology
9.
Mol Plant Pathol ; 15(9): 871-80, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24720811

ABSTRACT

Although the Sw-5 gene cluster has been cloned, and Sw-5b has been identified as the functional gene copy that confers resistance to Tomato spotted wilt virus (TSWV), its avirulence (Avr) determinant has not been identified to date. Nicotiana tabacum 'SR1' plants transformed with a copy of the Sw-5b gene are immune without producing a clear visual response on challenge with TSWV, whereas it is shown here that N. benthamiana transformed with Sw-5b gives a rapid and conspicuous hypersensitive response (HR). Using these plants, from all structural and non-structural TSWV proteins tested, the TSWV cell-to-cell movement protein (NSM ) was confirmed as the Avr determinant using a Potato virus X (PVX) replicon or a non-replicative pEAQ-HT expression vector system. HR was induced in Sw-5b-transgenic N. benthamiana as well as in resistant near-isogenic tomato lines after agroinfiltration with a functional cell-to-cell movement protein (NSM ) from a resistance-inducing (RI) TSWV strain (BR-01), but not with NSM from a Sw-5 resistance-breaking (RB) strain (GRAU). This is the first biological demonstration that Sw-5-mediated resistance is triggered by the TSWV NSM cell-to-cell movement protein.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Nicotiana/genetics , Plant Viral Movement Proteins/metabolism , Solanum lycopersicum/immunology , Solanum lycopersicum/virology , Tospovirus/physiology , Solanum lycopersicum/genetics , Molecular Sequence Data , Plant Diseases/immunology , Plant Diseases/virology , Plants, Genetically Modified , Replicon , Nicotiana/virology , Transformation, Genetic
10.
Virus Genes ; 36(1): 251-8, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18175211

ABSTRACT

Information on the distribution and prevalence of the economically destructive Begomovirus species and recombinant forms infecting fresh-market and processing tomato crops in Brazil is crucial in guiding breeding programs and also to understand the evolutionary mechanisms associated with the upsurge of so many species and quasi-species comprising this unique disease complex. An extensive survey was carried out over 3 years (between 2002 and 2004) aiming to study the diversity of begomoviruses in tomato plants, predominantly collected in central Brazil. Polymerase chain reaction (PCR) with degenerated primers was used to detect the begomoviruses in tomato leaf samples showing virus-like symptoms in commercial fields. Seven hundred and seventeen out of 2,295 samples were found to be PCR positive for a begomovirus infection. High quality sequences were obtained from a fragment encompassing the 5' region of the coat protein (CP) gene and a segment of the intergenic region for 295 isolates from distinct geographic regions. Comparison analyses with those available in public databases enabled preliminary classification of the isolates into four previously described and/or proposed species: Tomato severe rugose virus (61%), Tomato golden vein virus (29.8%), Tomato mottle leaf curl virus (7.1%), Tomato yellow vein streak virus (0.7%), and two putative new species (1.4% of isolates). Within the prevailing species, we noted a relatively low degree of diversity, possibly indicating the existence of recent population founder effects and/or recent selective sweeps.


Subject(s)
Begomovirus/genetics , Capsid Proteins/genetics , Genes, Viral , Genetic Variation , Plant Diseases/virology , Solanum lycopersicum/virology , Base Sequence , Begomovirus/isolation & purification , Brazil , Phylogeny , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...