Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Bone Rep ; 17: 101623, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36213624

ABSTRACT

The differences in bone nanomechanical properties between cortical (Ct) and trabecular (Tb) bone remain uncertain, whereas knowing the respective contribution of each compartment is critical to understand the origin of bone strength. Our purpose was to compare bone mechanical and intrinsic properties of Ct and Tb compartments, at the bone structural unit (BSU) level, in iliac bone taken from a homogeneous untreated human population. Among 60 PMMA-embedded transiliac bone biopsies from untreated postmenopausal osteoporotic women (64 ± 7 year-old), >2000 BSUs were analysed by nanoindentation in physiological wet conditions [indentation modulus (elasticity), hardness, dissipated energy], by Fourier transform infrared (FTIRM) and Raman microspectroscopy (mineral and organic characteristics), and by X-ray microradiography (degree of mineralization of bone, DMB). BSUs were categorized based on tissue age, osteonal (Ost) and interstitial (Int) tissues location and bone compartments (Ct and Tb). Indentation modulus was higher in Ct than in Tb BSUs, both in Ost and Int. dissipated energy was higher in Ct than Tb, in Int BSUs. Hardness was not different between Ct and Tb BSUs. In Ost or Int BSUs, mineral maturity (conversion of non-apatitic into apatitic phosphates) was higher in Ct than in Tb, as well as for collagen maturity (Ost). Mineral content assessed as mineral/matrix (FTIRM and Raman) or as DMB, was lower in Ct than in Tb. Crystallinity (FTIRM) was similar in BSUs from Ct and Tb, and slightly lower in Ct than in Tb when measured by Raman, indicating that the crystal size/perfection was quite similar between Ct and Tb BSUs. The differences found between Ost and Int tissues were much higher than the difference found between Ct and Tb for all those bone material properties. Multiple regression analysis showed that Indentation modulus and dissipated energy were mainly explained by mineral maturity in Ct and by collagen maturity in Tb, and hardness by mineral content in both Ct and Tb. In conclusion, in untreated human iliac bone, Ct and Tb BSUs exhibit different characteristics. Ct BSUs have higher indentation modulus, dissipated energy (Int), mineral and organic maturities than Tb BSUs, without difference in hardness. Although those differences are relatively small compared to those found between Ost and Int BSUs, they may influence bone strength at macroscale.

2.
Int J Mol Sci ; 23(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35742850

ABSTRACT

Chronic kidney disease (CKD) frequently leads to hyperphosphatemia and hyperparathyroidism, mineral bone disorder (CKD-MBD), ectopic calcifications and cardiovascular mortality. PTH activates the osteoanabolic Gαs/PKA and the Gαq/11/PKC pathways in osteoblasts, the specific impact of the latter in CKD-MBD is unknown. We generated osteoblast specific Gαq/11 knockout (KO) mice and established CKD-MBD by subtotal nephrectomy and dietary phosphate load. Bone morphology was assessed by micro-CT, osteoblast function by bone planar scintigraphy at week 10 and 22 and by histomorphometry. Osteoblasts isolated from Gαq/11 KO mice increased cAMP but not IP3 in response to PTH 1-34, demonstrating the specific KO of the PKC signaling pathway. Osteoblast specific Gαq/11 KO mice exhibited increased serum calcium and reduced bone cortical thickness and mineral density at 24 weeks. CKD Gαq/11 KO mice had similar bone morphology compared to WT, while CKD Gαq/11-KO on high phosphate diet developed decreased metaphyseal and diaphyseal cortical thickness and area, as well as a reduction in trabecular number. Gαq/11-KO increased bone scintigraphic tracer uptake at week 10 and mitigated tracer uptake in CKD mice at week 22. Histological bone parameters indicated similar trends. Gαq/11-KO in osteoblast modulates calcium homeostasis, bone formation rate, bone morphometry, and bone mineral density. In CKD and high dietary phosphate intake, osteoblast Gαq/11/PKC KO further aggravates mineral bone disease.


Subject(s)
Bone Diseases , Chronic Kidney Disease-Mineral and Bone Disorder , Renal Insufficiency, Chronic , Animals , Bone Density , Calcium , Cortical Bone/diagnostic imaging , Cortical Bone/metabolism , Mice , Mice, Knockout , Osteoblasts/metabolism , Parathyroid Hormone , Phosphates , Renal Insufficiency, Chronic/metabolism , Signal Transduction
3.
J Bone Miner Res ; 37(5): 856-864, 2022 05.
Article in English | MEDLINE | ID: mdl-35249242

ABSTRACT

In postmenopausal women with osteoporosis, denosumab (DMAb) therapy through 10 years resulted in significantly higher degree of mineralization of bone, with a subsequent increase from years 2-3 to year 5 and no further difference between years 5 and 10. Our aim was to assess the variables reflecting the quality of bone mineral and organic matrix (Fourier transform infrared microspectroscopy), and the microhardness of bone (Vickers microindentation). Cross-sectional assessments were performed in blinded fashion on iliac bone biopsies from osteoporotic women (72 from FREEDOM trial, 49 from FREEDOM Extension trial), separately in cortical and cancellous compartments. After 2-3 years of DMAb, mineral/matrix ratio and microhardness of cortical bone were significantly higher compared with placebo, whereas mineral maturity, mineral crystallinity, mineral carbonation, and collagen maturity were not different in both bone compartments. Through 5 years of DMAb, mineral carbonation was significantly lower and mineral/matrix ratio, mineral maturity, and crystallinity were significantly higher versus 2-3 years and were not different between 5 and 10 years, with the exception of mineral maturity in cancellous bone. These data support a transition of mineral to more mature crystals (within physiological range) and the completeness of secondary mineralization within 5 years of DMAb treatment. Microhardness in cortical and cancellous compartments was significantly lower at 5 years of DMAb versus 2-3 years and was not different from years 5 to 10. The lower microhardness at years 5 and 10 is likely the result of maturation of the organic matrix in a persistently low state of bone remodeling over 5 and 10 years. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Density Conservation Agents , Osteoporosis, Postmenopausal , Bone Density , Bone Density Conservation Agents/therapeutic use , Cross-Sectional Studies , Denosumab/therapeutic use , Female , Humans , Ilium/pathology , Minerals , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/pathology , Postmenopause
4.
Bone ; 153: 116107, 2021 12.
Article in English | MEDLINE | ID: mdl-34260980

ABSTRACT

Bone quality is altered mainly by osteoporosis, which is treated with modulators of bone quality. Knowledge of their mechanisms of action is crucial to understand their effects on bone quality. The goal of our study was to compare the action of alendronate (ALN) and strontium ranelate (SrRan) on the determinants of bone quality. The investigation was performed on over 60 paired human iliac biopsies. Paired samples correspond to biopsies obtained from the same patient, one before treatment (baseline) and one after 12 months of treatment, in postmenopausal women with osteoporosis. Vibrational spectroscopy (Raman and FTIRM) and nanoindentation were used to evaluate the effect of both drugs on bone quality at the ultrastructural level. Outcomes measured by vibrational spectroscopy and nanoindentation are sensitive to bone age. New bone packets are distinguished from old bone packets. Thus, the effect of bone age is distinguished from the treatment effect. Both drugs modify the mineral and organic composition in new and old bone in different fashions after 12 months of administration. The new bone formed during ALN administration is characterized by an increased mineral content, carbonation and apatite crystal size/perfection compared to baseline. Post-translational modifications of collagen are observed through an increase in the hydroxyproline/proline ratio in new bone. The proteoglycan content is also increased in new bone. SrRan directly modulates bone quality through its physicochemical actions, independent of an effect on bone remodeling. Strontium cations are captured by the hydrated layer of the mineral matrix. The mineral matrix formed during SrRan administration has a lower carbonate content and crystallinity after 12 months than at baseline. Strontium might create bonds (crosslinks) with collagen and noncollagenous proteins in new and old bone. The nanomechanical properties of bone were not modified with either ALN or SrRan, probably due to the short duration of administration. Our results show that ALN and SrRan have differential effects on bone quality in relation to their mechanism of action.


Subject(s)
Bone Density Conservation Agents , Osteoporosis, Postmenopausal , Alendronate/therapeutic use , Biopsy , Bone Density , Bone Density Conservation Agents/therapeutic use , Bone Matrix , Female , Humans , Ilium , Osteoporosis, Postmenopausal/drug therapy , Postmenopause , Thiophenes
5.
J Bone Miner Res ; 36(6): 1031-1041, 2021 06.
Article in English | MEDLINE | ID: mdl-33434290

ABSTRACT

Bisphosphonates (BPs) are the most widely used drugs for the treatment of osteoporosis but prolonged use of BPs might increase the risk of atypical femur fracture (AFF). There are only a few studies that address the bone material quality in patients on long-term BP treatment with or without AFFs. We analyzed 52 trans-iliac bone biopsies from patients on long-term BP therapy with (n = 26) and without (n = 26) AFF. At the microscopic level, the degree of mineralization of bone (DMB) was assessed on whole bone by X-ray digitized microradiography while microhardness by Vickers microindentation, and bone matrix characteristics by Fourier transform infrared microspectroscopy (FTIRM) (mineral/organic ratio, mineral maturity and crystallinity, and collagen maturity) were measured at random focal areas. The AFF patients were treated longer than non-AFF patients (9.7 ± 3.3 years versus 7.9 ± 2.7 years). As expected, bone remodeling was low in both groups, without difference between them. The AFF group had significantly higher DMB in cortical bone (+2.9%, p = .001), which remained so after adjusting for treatment duration (p = .007), and showed a trend in cancellous bone (+1.6%, p = .05). Consistent with higher DMB, heterogeneity index (HI) was lower in the AFF than in the non-AFF group, illustrating lower heterogeneity of mineralization in the AFF group. A significant positive correlation between the duration of treatment and DMB in cortical bone was found in AFF, and not in the non-AFF group. Microhardness and bone matrix characteristics were similar between groups. We conclude that the AFF group had a duration-dependent increase in DMB leading to a significantly higher DMB than the non-AFF. Because BPs have high affinity to bone mineral and lining the walls of the osteocyte lacunae, the accumulation of matrix-bound BPs in AFF could lead to inhibition of the osteocyte cytoskeleton blunting their response to mechanical strains, a hypothesis to be further investigated. © 2021 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Density Conservation Agents , Femoral Fractures , Bone Matrix , Bone Remodeling , Diphosphonates/adverse effects , Femoral Fractures/diagnostic imaging , Femoral Fractures/drug therapy , Femur/diagnostic imaging , Humans
6.
JBMR Plus ; 2(6): 323-327, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30460335

ABSTRACT

Women with equivalent areal bone mineral densities may show a different fracture incidence due to differences in bone intrinsic quality. Previously, Fourier transform infrared spectroscopic imaging (FTIRI) on the same iliac bone biopsies reported here, showed that the only significantly different variable was the carbonate/phosphate ratio, which was decreased in the fracturing group. Nanoindentation showed that fracturing bone was less mechanically heterogeneous than nonfracturing bone and could propagate damage (microcracks) more easily. The hypothesis is that fracturing women have reduced mineralization of bone tissue compared to nonfracturing women. Transiliac bone biopsies were collected from fracturing (n = 60, 62.5 ± 7.4 years old) and nonfracturing (n = 60, 62.3 ± 7.3 years old) postmenopausal women, to assess the mineralization of bone tissue using digitized microradiography. The degree of mineralization of bone (DMB, g/cm3) and the heterogeneity index (HI, g/cm3) of the DMB were calculated for cancellous (canc), cortical (cort) and total bone. Results were compared to variables from nanoindentation, FTIRI, and histomorphometry. DMB and HI were not significantly different between fracturing and nonfracturing groups. In the nonfracturing group, cort and canc HI were weakly negatively associated with cort and canc DMB (r' = -0.388, p < 0.003; r' = -0.532, p < 0.0001, respectively). In the fracturing group, DMB and HI were negatively correlated only in canc (r' = -0.295, p = 0.024). DMB and HI were not associated with nanoindentation variables. Cort and canc DMB were positively associated with mineral-to-matrix ratio measured by FTIRI (ratio between mineral and organic matrix representing the relative mineralization of the collagen matrix), and negatively associated with carbonate/phosphate ratio. None of the DMB variables were strongly associated with any of the histomorphometric variables. In conclusion, bone mineralization was not significantly different between fracturing and nonfracturing postmenopausal women, suggesting that bone fragility could be partly due to other variables, such as changes in hydration of bone matrix or an increase of non-enzymatic crosslinks in bone collagen. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

7.
J Clin Endocrinol Metab ; 103(7): 2498-2509, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29672714

ABSTRACT

Context: Denosumab is a potent antiresorptive agent that reduces fractures in postmenopausal women with osteoporosis. Objective: Determine effects of up to 10 years of denosumab on bone histology, remodeling, and matrix mineralization characteristics. Design and Setting: International, multicenter, randomized, double-blind trial [Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM)] with a long-term open-label extension. Patients: Postmenopausal women with osteoporosis (92 women in FREEDOM, 46 in extension) who provided iliac bone biopsies, including 11 who provided biopsies at multiple time points. Interventions: FREEDOM subjects were randomized 1:1 to subcutaneous denosumab 60 mg or placebo every 6 months for 3 years. Long-term extension subjects continued receiving denosumab, open-label, for 7 additional years. Outcomes: Bone histology, histomorphometry, matrix mineralization. Results: Ten-year denosumab biopsies showed normal histology. Bone histomorphometry indicated normal bone structure and reduced bone remodeling after 10 years of denosumab, similar to levels after 2 and/or 3 and 5 years of denosumab. The degree of mineralization of bone was increased and mineralization heterogeneity was reduced in the denosumab years 2/3 group vs placebo. Changes in these mineralization variables progressed from years 2/3 to year 5 of denosumab, but not thereafter. Conclusions: Denosumab for 2/3, 5, and 10 years was associated with normal histology, low bone remodeling rate, increased matrix mineralization, and lower mineralization heterogeneity compared with placebo. These variables were unchanged from year 5 to year 10. These data, in combination with the maintenance of low fracture rates for up to 10 years as previously reported with denosumab therapy, suggest that strong, prolonged remodeling inhibition does not impair bone strength.


Subject(s)
Bone Density Conservation Agents/pharmacology , Bone Remodeling/drug effects , Calcification, Physiologic/drug effects , Denosumab/pharmacology , Osteoporosis, Postmenopausal/drug therapy , Aged , Bone Density Conservation Agents/administration & dosage , Denosumab/administration & dosage , Double-Blind Method , Drug Administration Schedule , Female , Humans , Middle Aged , Osteoporosis, Postmenopausal/physiopathology , Time Factors , Treatment Outcome
8.
Sci Rep ; 7(1): 3419, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28611441

ABSTRACT

Interfaces provide the structural basis of essential bone functions. In the hierarchical structure of bone tissue, heterogeneities such as porosity or boundaries are found at scales ranging from nanometers to millimeters, all of which contributing to macroscopic properties. To date, however, the complexity or limitations of currently used imaging methods restrict our understanding of this functional integration. Here we address this issue using label-free third-harmonic generation (THG) microscopy. We find that the porous lacuno-canalicular network (LCN), revealing the geometry of osteocytes in the bone matrix, can be directly visualized in 3D with submicron precision over millimetric fields of view compatible with histology. THG also reveals interfaces delineating volumes formed at successive remodeling stages. Finally, we show that the structure of the LCN can be analyzed in relation with that of the extracellular matrix and larger-scale structures by simultaneously recording THG and second-harmonic generation (SHG) signals relating to the collagen organization.


Subject(s)
Cortical Bone/diagnostic imaging , Microscopy, Fluorescence, Multiphoton/methods , Optical Imaging/methods , Porosity , Aged, 80 and over , Animals , Cattle , Cortical Bone/cytology , Female , Humans , Ice , Mice, Inbred C57BL , Osteocytes/cytology , Sheep
9.
PLoS One ; 12(4): e0176179, 2017.
Article in English | MEDLINE | ID: mdl-28423023

ABSTRACT

Nanoscale studies of bone provide key indicators to evidence subtle structural changes that may occur in the biomedical, forensic and archaeological contexts. One specific problem encountered in all those disciplines, for which the identification of nanostructural cues could prove useful, is to properly monitor the effect of heating on bone tissue. In particular, the mechanisms at work at the onset of heating are still relatively unclear. Using a multiscale approach combining Raman microspectroscopy, transmission electron microscopy (TEM), synchrotron quantitative scanning small-angle X-ray scattering imaging (qsSAXSI) and polarized light (PL) microscopy, we investigate the ultrastructure of cortical bovine bone heated at temperatures < 300°C, from the molecular to the macroscopic scale. We show that, despite limited changes in crystal structure, the mineral nanoparticles increase in thickness and become strongly disorganized upon heating. Furthermore, while the nanostructure in distinct anatomical quadrants appears to be statistically different, our results demonstrate this stems from the tissue histology, i.e. from the high degree of heterogeneity of the microstructure induced by the complex cellular processes involved in bone tissue formation. From this study, we conclude that the analysis of bone samples based on the structure and organization of the mineral nanocrystals requires performing measurements at the histological level, which is an advantageous feature of qsSAXSI. This is a critical aspect that extends to a much broader range of questions relating to nanoscale investigations of bone, which could also be extended to other classes of nanostructured heterogeneous materials.


Subject(s)
Cortical Bone/ultrastructure , Nanostructures/ultrastructure , Animals , Cattle , Heating , Microscopy, Electron, Transmission , Scattering, Small Angle , Spectrum Analysis, Raman , X-Ray Diffraction
10.
Bone ; 98: 9-17, 2017 05.
Article in English | MEDLINE | ID: mdl-28254466

ABSTRACT

BACKGROUND: Advancements in research and clinical care have considerably extended the life expectancy of cystic fibrosis (CF) patients. However, with this extended survival come comorbidities. One of the leading co-morbidities is CF-related bone disease (CFBD), which progresses with disease severity and places patients at high risk for fractures, particularly of the ribs and vertebrae. Evidence that CF patients with vertebral fractures had higher bone mineral density (BMD) than the nonfracture group led us to postulate that bone quality is impaired in these patients. We therefore examined rib specimens resected at the time of lung transplant in CF patients to measure parameters of bone quantity and quality. METHODS: In this exploratory study, we analysed 19 end-stage CF and 13 control rib specimens resected from otherwise healthy lung donors. BMD, bone microarchitecture, static parameters of bone formation and resorption and microcrack density of rib specimens were quantified by imaging, histomorphometric and histological methods. Variables reflecting the mineralization of ribs were assessed by digitized microradiography. The degree of bone mineralization (g/cm3) and the heterogeneity index of the mineralization (g/cm3) were calculated for trabecular and cortical bone. RESULTS: Compared to controls, CF ribs exhibited lower areal and trabecular volumetric BMD, decreased trabecular thickness and osteoid parameters, and increased microcrack density, that was particularly pronounced in specimens from patients with CF-related diabetes. Static parameters of bone resorption were similar in both groups. Degree of mineralization of total bone, but not heterogeneity index, was increased in CF specimens. CONCLUSION: The combination of reduced bone mass, altered microarchitecture, imbalanced bone remodeling (maintained bone resorption but decreased formation), increased microdamage and a small increase of the degree of mineralization, may lead to decreased bone strength, which, when coupled with chronic coughing and chest physical therapy, may provide an explanation for the increased incidence of rib fractures previously reported in this population.


Subject(s)
Cystic Fibrosis/pathology , Ribs/pathology , Absorptiometry, Photon , Adult , Bone Density , Bone Remodeling , Female , Humans , Male , Young Adult
11.
Bonekey Rep ; 5: 828, 2016.
Article in English | MEDLINE | ID: mdl-27579165

ABSTRACT

Hypophosphatemic rickets and short stature are observed in nephropathic cystinosis, an orphan autosomal recessive lysosomal storage disease due to a deficiency of cystinosin (CTNS gene). Although bone impairment is not common, it nevertheless appears to be more and more discussed by experts, even though the exact underlying pathophysiology is unclear. Four hypotheses are currently discussed to explain such impairment: copper deficiency, bone consequences of severe hypophosphatemic rickets during infancy, cysteamine toxicity and abnormal thyroid metabolism. In murine models, the invalidation of the CTNS gene is associated neither with renal phosphate wasting nor with renal failure, but causes severe osteopenia and growth retardation, thus raising the hypothesis of a specific underlying bone defect in cystinosis. Moreover, the in vitro ability of mesenchymal stromal cells isolated from bone marrow to differentiate along the osteoblastic lineage is reduced in patients with cystinosis as compared with cells obtained from healthy controls, this cellular abnormality being reverted after cysteamine treatment. From our experience of three pediatric patients with cystinosis and severe bone deformations having undergone a thorough biochemical evaluation, as well as a bone biopsy, we conclude that even though copper deficiency, high-doses cysteamine regimens and abnormal thyroid metabolism may worsen the bone picture in cystinosis patients, the exact pathophysiology of such impairment remains to be defined. The role of chronic hypoparathyroidism due to chronic phosphate wasting could also be discussed. In the future, larger and prospective studies should focus on this topic because of the potential major impact on patients' quality of life.

12.
J Bone Miner Res ; 31(9): 1631, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27505631
14.
Arch Osteoporos ; 11: 23, 2016.
Article in English | MEDLINE | ID: mdl-27325398
15.
Article in English | MEDLINE | ID: mdl-26901300

ABSTRACT

The purpose of this study was to investigate peri-implant tissue adaptation on platform-switched implants with a Morse cone-type connection, after 3 and 12 weeks of healing in dogs. Ten weeks after mandibular premolar extractions, eight beagle dogs received three implants each. At each biopsy interval, four animals were sacrificed and biopsies were processed for histologic analysis. The height of the peri-implant mucosa was 2.32 mm and 2.88 mm, respectively, whereas the bone level in relation to the implant platform was -0.39 mm and -0.67 mm, respectively, after 3 and 12 weeks of healing. Within the limits of the present study, platform-switched implants exhibited reduced values of biologic width and marginal bone loss when compared with previous data.


Subject(s)
Dental Implant-Abutment Design , Dental Implantation, Endosseous/methods , Dental Marginal Adaptation , Animals , Bicuspid/surgery , Biopsy , Dogs , Mandible/surgery
16.
Pediatr Nephrol ; 31(1): 1-6, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25631241

ABSTRACT

Deposition of calcium oxalate crystals in the kidney and bone is a hallmark of primary hyperoxaluria (PH). Since the bone compartment can store massive amounts of oxalate, patients present with recurrent low-trauma fractures, bone deformations, severe bone pains, and specific oxalate osteopathy on X-ray. Bone biopsy from the iliac crest displays specific features such as oxalate crystals surrounded by a granulomatous reaction corresponding to an invasion of bone surface by macrophages. The objective of this manuscript is therefore to provide an overview of bone impairment in PH, by reviewing the current literature on bone and dental symptoms as well as imaging techniques used for assessing bone disease.


Subject(s)
Bone Diseases, Metabolic/etiology , Bone Remodeling , Bone and Bones/metabolism , Calcium Oxalate/metabolism , Hyperoxaluria, Primary/complications , Stomatognathic Diseases/etiology , Animals , Biopsy , Bone Density , Bone Diseases, Metabolic/diagnosis , Bone Diseases, Metabolic/metabolism , Bone Diseases, Metabolic/physiopathology , Bone Diseases, Metabolic/therapy , Bone and Bones/pathology , Bone and Bones/physiopathology , Crystallization , Diagnostic Imaging/methods , Humans , Hyperoxaluria, Primary/metabolism , Hyperoxaluria, Primary/therapy , Predictive Value of Tests , Prognosis , Risk Factors , Stomatognathic Diseases/diagnosis , Stomatognathic Diseases/metabolism , Stomatognathic Diseases/physiopathology , Stomatognathic Diseases/therapy
17.
J Bone Miner Res ; 31(1): 190-5, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26234180

ABSTRACT

Low-energy fractures are frequent complications in type 1 diabetes mellitus patients (T1DM). Modifications of bone intrinsic composition might be a potential cause of fragility observed in diabetic subjects. Advanced glycation end products (AGEs) were found in numerous connective tissues from T1DM patients. However, whether AGEs are present at high levels in bone matrix from diabetic subjects is unknown. Moreover, whether elevated AGEs in the bone matrix impair mineralization has not been addressed in humans. The purposes of this study were 1) to determine whether bone matrix from fracturing and nonfracturing T1DM contained more AGEs than bone from healthy patients (CTL), and 2) to compare the degree of mineralization of bone and hardness between fracturing and nonfracturing T1DM versus CTL. We analyzed iliac crest bone biopsies from 5 fracturing T1DM patients, 5 nonfracturing T1DM patients, and 5 healthy subjects, all age- and sex-matched. AGEs (pentosidine) in bone matrix was measured by high-performance liquid chromatography separately in trabecular and cortical bone. The degree of mineralization of bone (DMB) was assessed by digitized microradiography, and mechanical properties by micro- and nanohardness tests. Trabecular bone from fracturing T1DM exhibited significantly higher levels of pentosidine than CTL (p = 0.04) and was more mineralized than nonfracturing T1DM (p = 0.04) and CTL (p = 0.04). Trabecular bone was not significantly different in pentosidine between nonfracturing T1DM and CTL. Cortical bone from nonfracturing T1DM was not significantly different from CTL. Positive correlations were found between HbA1c and pentosidine (r' = 0.79, p < 0.003) and between HbA1c and DMB (r' = 0.64, p < 0.02). Both modifications could lead to less flexible bone (reduced modulus of elasticity) and a tendency toward low-energy fractures in T1DM patients.


Subject(s)
Bone Density , Calcification, Physiologic , Diabetes Mellitus, Type 1 , Fractures, Bone , Glycation End Products, Advanced , Adult , Diabetes Complications/diagnostic imaging , Diabetes Complications/metabolism , Diabetes Mellitus, Type 1/diagnostic imaging , Diabetes Mellitus, Type 1/metabolism , Female , Fractures, Bone/diagnostic imaging , Fractures, Bone/etiology , Fractures, Bone/metabolism , Glycated Hemoglobin/metabolism , Humans , Male , Middle Aged , Radiography
18.
Implant Dent ; 24(5): 598-606, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26280485

ABSTRACT

INTRODUCTION: The purpose of our study was to investigate the early healing phase of marginal bone and soft tissues around unloaded 1-piece implants with a concave transmucosal design, in a dog model. METHODS: Twenty-four 1-piece implants with a concave transmucosal neck were inserted 1 mm subcrestally in the mandibular ridge of 8 beagle dogs. Four animals were sacrificed after 3 and 12 weeks of healing. Histomorphometric analysis was performed to measure the height of the periimplant tissues. RESULTS AND DISCUSSION: The overall height of the periimplant mucosa was, respectively, 2.67 and 2.52 mm, after 3 and 12 weeks. In the connective tissue, a soft tissue O-ring seal was observed in the healing area provided by the transmucosal concavity, after 12 weeks. The location of the first bone-to-implant contact facing the implant shoulder was 0.00 and +0.18 mm, respectively, after 3 and 12 weeks of healing. Some bone apposition occurred on the implant shoulder during the healing. CONCLUSION: Within the limits of the present study, a concave transmucosal design in 1-piece implants was associated with a short vertical value of biological width and promoted a mechanical interlocking of the implant body at the connective tissue and marginal bone levels.


Subject(s)
Alveolar Process/pathology , Dental Implantation, Endosseous , Dental Implants , Mouth Mucosa/pathology , Wound Healing , Animals , Collagen/metabolism , Dental Implant-Abutment Design/adverse effects , Dental Implant-Abutment Design/methods , Dental Implantation, Endosseous/adverse effects , Dental Implants/adverse effects , Dogs
19.
Bone ; 81: 161-167, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26164477

ABSTRACT

Deposition of calcium oxalate crystals in the kidney and bone is a hallmark of systemic oxalosis. Since the bone compartment can store massive amounts of oxalate, patients present with recurrent low-trauma fractures, bone deformations, severe bone pains and specific oxalate osteopathy on plain X-ray. Bone biopsy from the iliac crest displays specific features such as oxalate crystals surrounded by a granulomatous reaction due to an invasion of bone surface by macrophages. We present data obtained in 10 samples from 8 patients with oxalosis (16-68 years) who underwent iliac crest bone biopsy and bone quality analysis using modern methods (microradiography, microindentation, Fourier Transform InfraRed Microspectroscopy, transmission electron microscopy) in addition to histomorphometry. Disseminated calcium oxalate deposits (whewellite) were found in the bone marrow space (with a granulomatous reaction) but not in the bone matrix. Calcium oxalate deposits were totally surrounded by macrophages and multinucleated giant cells, and a phagocytosis activity was sometimes observed. Very few calcium oxalate crystals were directly in close contact with the mineral substance of the bone. Bone mineralization was not modified by the presence of calcium oxalate even in close vicinity. Bone quality analysis also revealed a harder bone than normal, perhaps in relationship with decreased carbonate content in the mineral. This increase in bone hardness could explain a more "brittle" bone. In patients with oxalosis, the formation and growth of calcium oxalate crystals in the bone appeared independent of apatite. The mechanisms leading to nucleation and growth of oxalate deposits are still unclear and deserve further studies.


Subject(s)
Calcification, Physiologic/physiology , Hyperoxaluria/diagnosis , Hyperoxaluria/metabolism , Ilium/metabolism , Ilium/ultrastructure , Adolescent , Adult , Aged , Calcium Oxalate/analysis , Calcium Oxalate/metabolism , Female , Humans , Ilium/chemistry , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/metabolism , Male , Middle Aged , Retrospective Studies , Young Adult
20.
Bone ; 79: 190-5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26079997

ABSTRACT

As a determinant of skeletal fragility, the organic matrix is responsible for the post-yield and creep behavior of bone and for its toughness, while the mineral apatite acts on stiffness. Specific to the fibula and ulna in children, greenstick fractures show a plastic in vivo mechanical behavior before bone fracture. During growth, the immature form of collagen enzymatic cross-links gradually decreases, to be replaced by the mature form until adolescence, subsequently remaining constant throughout adult life. However, the link between the cortical bone organic matrix and greenstick fractures in children remains to be explored. Here, we sought to determine: 1) whether plastic bending fractures can occur in vitro, by testing cortical bone samples from children's fibula and 2) whether the post-yield behavior (ωp plastic energy) of cortical bone before fracture is related to total quantity of the collagen matrix, or to the quantity of mature and immature enzymatic cross-links and the quantity of non-enzymatic cross-links. We used a two-step approach; first, a 3-point microbending device tested 22 fibula machined bone samples from 7 children and 3 elderly adults until fracture. Second, biochemical analysis by HPLC was performed on the sample fragments. When pooling two groups of donors, children and elderly adults, results show a rank correlation between total energy dissipated before fracture and age and a linear correlation between plastic energy dissipated before fracture and ratio of immature/mature cross-links. A collagen matrix with more immature cross-links (i.e. a higher immature/mature cross-link ratio) is more likely to plastically deform before fracture. We conclude that this ratio in the sub-nanostructure of the organic matrix in cortical bone from the fibula may go some way towards explaining the variance in post-yield behavior. From a clinical point of view, therefore, our results provide a potential explanation of the presence of greenstick fractures in children.


Subject(s)
Bone Matrix/growth & development , Bone Matrix/physiopathology , Fractures, Bone/physiopathology , Aged , Aged, 80 and over , Biomechanical Phenomena , Bone Matrix/chemistry , Child , Child, Preschool , Chromatography, High Pressure Liquid , Fibula/physiology , Humans , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...