Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Life Sci Alliance ; 7(10)2024 Oct.
Article in English | MEDLINE | ID: mdl-39111820

ABSTRACT

The mRNA 5'cap-binding eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in the control of mRNA translation in health and disease. One mechanism of regulation of eIF4E activity is via phosphorylation of eIF4E by MNK kinases, which promotes the translation of a subset of mRNAs encoding pro-tumorigenic proteins. Work on eIF4E phosphatases has been paltry. Here, we show that PPM1G is the phosphatase that dephosphorylates eIF4E. We describe the eIF4E-binding motif in PPM1G that is similar to 4E-binding proteins (4E-BPs). We demonstrate that PPM1G inhibits cell proliferation by targeting phospho-eIF4E-dependent mRNA translation.


Subject(s)
Cell Proliferation , Eukaryotic Initiation Factor-4E , Protein Biosynthesis , Protein Phosphatase 2C , RNA, Messenger , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4E/genetics , Humans , Cell Proliferation/genetics , Protein Phosphatase 2C/metabolism , Protein Phosphatase 2C/genetics , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Protein Binding , HEK293 Cells , Animals
2.
Environ Sci Pollut Res Int ; 31(32): 45234-45245, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961023

ABSTRACT

Wastewater treatment plants (WWTPs) are suspected reservoirs of Legionella pneumophila (Lp). The required aeration and mixing steps lead to the emission and dispersion of bioaerosols potentially harboring Lp. The aim of the project is to evaluate municipal WWTPs as a possible source of legionellosis through the statistical analysis of case clusters. A space-time scanning statistical method was implemented in SaTScan software to identify and analyze WWTPs located within and close to spatiotemporal clusters of legionellosis detected in Quebec between 2016 and 2020. In parallel, WWTPs were ranked according to their pollutant load, flow rate and treatment type. These parameters were used to evaluate the WWTP susceptibility to generate and disperse bioaerosols. Results show that 37 of the 874 WWTPs are located inside a legionellosis cluster study zone, including six of the 40 WWTPs ranked most susceptible. In addition, two susceptible WWTPs located within an extended area of 2.5 km from the study zone (2.5-km buffer) were included, for a total of 39 WWTPs. The selected 39 WWTPs were further studied to document proximity of population, dominant wind direction, and surrounding water quality. Samples collected from the influent and the effluent of six selected WWTPs revealed the presence of Legionella spp. in 92.3% of the samples. Lp and Lp serogroupg 1 (Lp sg1) were detected below the limit of quantification in 69% and 46% of the samples, respectively. The presence of Legionella in wastewater and the novel statistical approach presented here provides information to the public health authorities regarding the investigation of WWTPs as a possible source of Legionella exposure, sporadic cases, and clusters of legionellosis.


Subject(s)
Environmental Monitoring , Legionellosis , Wastewater , Legionellosis/epidemiology , Humans , Quebec/epidemiology , Legionella pneumophila , Water Purification , Water Microbiology , Waste Disposal, Fluid
3.
Sci Rep ; 13(1): 23086, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38155174

ABSTRACT

Preserving the in vivo cell transcriptome is essential for accurate profiling, yet factors during cell isolation including time ex vivo and temperature induce artifactual gene expression, particularly in stress-responsive immune cells. In this study, we investigated two methods to mitigate ex vivo activation signature gene (ASG) expression in peripheral blood mononuclear cells (PBMCs): transcription and translation inhibitors (TTis) and cold temperatures during isolation. Comparative analysis of PBMCs isolated with TTis revealed reduced ASG expression. However, TTi treatment impaired responsiveness to LPS stimulation in subsequent in vitro experiments. In contrast, cold isolation methods also prevented ASG expression; up to a point where the addition of TTis during cold isolation offered minimal additional advantage. These findings highlight the importance of considering the advantages and drawbacks of different isolation methods to ensure accurate interpretation of PBMC transcriptomic profiles.


Subject(s)
Leukocytes, Mononuclear , Transcriptome , Leukocytes, Mononuclear/metabolism , Cold Temperature , Temperature , Gene Expression Profiling/methods
4.
Stem Cell Res ; 64: 102919, 2022 10.
Article in English | MEDLINE | ID: mdl-36130446

ABSTRACT

The GBA gene encodes the lysosomal enzyme glucocerebrosidase (GCase), responsible for the hydrolysis of glucocerebroside to glucose and ceramide. Heterozygous GBA mutations have been associated with the development of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). We generated two induced pluripotent stem cell (iPSC) lines from PD patients carrying heterozygous GBA W378G or N370S mutations and subsequently produced isogenic control lines using CRISPR/Cas9 genome editing. The patient-derived iPSCs and isogenic control lines maintained full pluripotency, normal karyotypes, and differentiation capacity. All iPSC lines could be differentiated into dopaminergic neurons, thus providing valuable tools for studying PD pathogenesis.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Humans , Glucose , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Glucosylceramides/metabolism , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Parkinson Disease/pathology
5.
Stem Cell Res ; 62: 102806, 2022 07.
Article in English | MEDLINE | ID: mdl-35561458

ABSTRACT

Autosomal recessive mutations in either PRKN or PINK1 are associated with early-onset Parkinson's disease. The corresponding proteins, PRKN, an E3 ubiquitin ligase, and the mitochondrial serine/threonine-protein kinase PINK1 play a role in mitochondrial quality control. Using CRISPR/CAS9 technology we generated three human iPSC lines from the well characterized AIW002-02 control line. These isogenic iPSCs contain homozygous knockouts of PRKN (PRKN-KO, CBIGi001-A-1), PINK1 (PINK1-KO, CBIGi001-A-2) or both PINK1 and PRKN (PINK1-KO/PRKN-KO, CBIGi001-A-3). The knockout lines display normal karyotypes, express pluripotency markers and upon differentiation into relevant brain cells or midbrain organoids may be valuable tools to model Parkinson's disease.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , CRISPR-Cas Systems/genetics , Cell Line , Humans , Induced Pluripotent Stem Cells/metabolism , Mitophagy/genetics , Parkinson Disease/genetics , Protein Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
Neuroinformatics ; 20(1): 139-153, 2022 01.
Article in English | MEDLINE | ID: mdl-34003431

ABSTRACT

In January 2016, the Montreal Neurological Institute-Hospital (The Neuro) declared itself an Open Science organization. This vision extends beyond efforts by individual scientists seeking to release individual datasets, software tools, or building platforms that provide for the free dissemination of such information. It involves multiple stakeholders and an infrastructure that considers governance, ethics, computational resourcing, physical design, workflows, training, education, and intra-institutional reporting structures. The C-BIG repository was built in response as The Neuro's institutional biospecimen and clinical data repository, and collects biospecimens as well as clinical, imaging, and genetic data from patients with neurological disease and healthy controls. It is aimed at helping scientific investigators, in both academia and industry, advance our understanding of neurological diseases and accelerate the development of treatments. As many neurological diseases are quite rare, they present several challenges to researchers due to their small patient populations. Overcoming these challenges required the aggregation of datasets from various projects and locations. The C-BIG repository achieves this goal and stands as a scalable working model for institutions to collect, track, curate, archive, and disseminate multimodal data from patients. In November 2020, a Registered Access layer was made available to the wider research community at https://cbigr-open.loris.ca , and in May 2021 fully open data will be released to complement the Registered Access data. This article outlines many of the aspects of The Neuro's transition to Open Science by describing the data to be released, C-BIG's full capabilities, and the design aspects that were implemented for effective data sharing.


Subject(s)
Information Dissemination , Software , Humans
7.
Can J Public Health ; 112(5): 807-817, 2021 10.
Article in English | MEDLINE | ID: mdl-34374036

ABSTRACT

OBJECTIVES: The Quebec Public Health Institute (INSPQ) was mandated to develop an automated tool for detecting space-time COVID-19 case clusters to assist regional public health authorities in identifying situations that require public health interventions. This article aims to describe the methodology used and to document the main outcomes achieved. METHODS: New COVID-19 cases are supplied by the "Trajectoire de santé publique" information system, geolocated to civic addresses and then aggregated by day and dissemination area. To target community-level clusters, cases identified as residents of congregate living settings are excluded from the cluster detection analysis. Detection is performed using the space-time scan statistic and Poisson statistical model, and implemented in the SaTScan software. Information on detected clusters is disseminated daily via an online interactive mapping interface. RESULTS: The number of clusters detected tracked with the number of new cases. Slightly more than 4900 statistically significant (p ≤ 0.01) space-time clusters were detected over 14 health regions from May to October 2020. The Montréal region was the most affected. CONCLUSION: Considering the objective of timely cluster detection, the use of near-real-time health surveillance data of varying quality over time and by region constitutes an acceptable compromise between timeliness and data quality. This tool serves to supplement the epidemiologic investigations carried out by regional public health authorities for purposes of COVID-19 management and prevention.


RéSUMé: OBJECTIFS: L'Institut national de santé publique du Québec (INSPQ) a reçu le mandat d'élaborer un outil de détection automatisé des agrégats spatio-temporels des cas de COVID-19 afin d'aider les régions à détecter des situations nécessitant des interventions de santé publique. Cet article vise à décrire la méthodologie utilisée et à présenter les principaux résultats obtenus. MéTHODE: Les nouveaux cas de COVID-19 proviennent du Système d'information Trajectoire de santé publique, ils sont géolocalisés à l'adresse civique, puis agrégés par jour et par aire de diffusion. Afin d'isoler la transmission communautaire, les cas identifiés comme résidents d'un milieu de vie fermé sont exclus des analyses de détection des agrégats. La méthode de détection est la statistique de balayage spatio-temporel basée sur le modèle de Poisson et implantée dans le logiciel SaTScan . Les agrégats détectés sont diffusés quotidiennement dans une interface cartographique web interactive. RéSULTATS: Le nombre d'agrégats détectés varie en fonction du nombre de nouveaux cas. Un peu plus de 4 900 agrégats spatio-temporels statistiquement significatifs (p ≤ 0,01) ont été détectés dans 14 régions sociosanitaires entre mai et octobre 2020. La région de Montréal est la plus touchée. CONCLUSION: Considérant l'objectif d'une détection d'agrégats en temps opportun, l'utilisation des données de vigie sanitaire en temps quasi réel, dont la qualité est variable dans le temps et selon les régions, constitue un compromis acceptable. Il s'agit d'un outil complémentaire aux enquêtes épidémiologiques menées par les autorités régionales de santé publique dans la gestion et la prévention des impacts populationnels de la COVID-19.


Subject(s)
COVID-19 , Public Health , COVID-19/epidemiology , Cluster Analysis , Humans , Quebec/epidemiology
8.
Front Immunol ; 9: 834, 2018.
Article in English | MEDLINE | ID: mdl-29867923

ABSTRACT

In autoimmunity, the balance of different helper T (Th) cell subsets can influence the tissue damage caused by autoreactive T cells. Pro-inflammatory Th1 and Th17 T cells are implicated as mediators of several human autoimmune conditions such as multiple sclerosis (MS). Autologous hematopoietic stem cell transplantation (aHSCT) has been tested in phase 2 clinical trials for MS patients with aggressive disease. Abrogation of new clinical relapses and brain lesions can be seen after ablative aHSCT, accompanied by significant reductions in Th17, but not Th1, cell populations and activity. The cause of this selective decrease in Th17 cell responses following ablative aHSCT is not completely understood. We identified an increase in the kinetics of natural killer (NK) cell reconstitution, relative to CD4+ T cells, in MS patients post-aHSCT, resulting in an increased NK cell:CD4+ T cell ratio that correlated with the degree of decrease in Th17 responses. Ex vivo removal of NK cells from post-aHSCT peripheral blood mononuclear cells resulted in higher Th17 cell responses, indicating that NK cells can regulate Th17 activity. NK cells were also found to be cytotoxic to memory Th17 cells, and this toxicity is mediated through NKG2D-dependent necrosis. Surprisingly, NK cells induced memory T cells to secrete more IL-17A. This was preceded by an early rise in T cell expression of RORC and IL17A mRNA, and could be blocked with neutralizing antibodies against CD58, a costimulatory receptor expressed on NK cells. Thus, NK cells provide initial co-stimulation that supports the induction of a Th17 response, followed by NKG2D-dependent cytotoxicity that limits these cells. Together these data suggest that rapid reconstitution of NK cells following aHSCT contribute to the suppression of the re-emergence of Th17 cells. This highlights the importance of NK cells in shaping the reconstituting immune system following aHSCT in MS patients.


Subject(s)
Hematopoietic Stem Cell Transplantation , Killer Cells, Natural/immunology , Multiple Sclerosis, Relapsing-Remitting/therapy , Th17 Cells/immunology , Autoimmunity , CD58 Antigens/immunology , Cytokines/immunology , GPI-Linked Proteins/immunology , Gene Expression Regulation , Humans , Immunologic Memory , Intercellular Signaling Peptides and Proteins/immunology , Interleukin-17/immunology , Multiple Sclerosis, Relapsing-Remitting/immunology , Transplantation, Autologous
9.
Stem Cells Transl Med ; 5(11): 1506-1514, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27400792

ABSTRACT

: Human mesenchymal stem cells (hMSCs) are being increasingly pursued as potential therapies for immune-mediated conditions, including multiple sclerosis. Although they can suppress human Th1 responses, they reportedly can reciprocally enhance human Th17 responses. Here, we investigated the mechanisms underlying the capacity of hMSCs to modulate human Th1 and Th17 responses. Human adult bone marrow-derived MSCs were isolated, and their purity and differentiation capacity were confirmed. Human venous peripheral blood mononuclear cells (PBMC) were activated, alone, together with hMSC, or in the presence of hMSC-derived supernatants (sups). Cytokine expression by CD4+ T-cell subsets (intracellular staining by fluorescence-activated cell sorting) and secreted cytokines (enzyme-linked immunosorbent assay) were then quantified. The contribution of prostaglandin E2 (PGE2) as well as of myeloid cells to the hMSC-mediated regulation of T-cell responses was investigated by selective depletion of PGE2 from the hMSC sups (anti-PGE2 beads) and by the selective removal of CD14+ cells from the PBMC (magnetic-activated cell sorting separation). Human MSC-secreted products could reciprocally induce interleukin-17 expression while decreasing interferon-γ expression by human CD4+ T cells, both in coculture and through soluble products. Pre-exposure of hMSCs to IL-1ß accentuated their capacity to reciprocally regulate Th1 and Th17 responses. Human MSCs secreted high levels of PGE2, which correlated with their capacity to regulate the T-cell responses. Selective removal of PGE2 from the hMSC supernatants abrogated the impact of hMSC on the T cells. Selective removal of CD14+ cells from the PBMCs also limited the capacity of hMSC-secreted PGE2 to affect T-cell responses. Our discovery of a novel PGE2-dependent and myeloid cell-mediated mechanism by which human MSCs can reciprocally induce human Th17 while suppressing Th1 responses has implications for the use of, as well as monitoring of, MSCs as a potential therapeutic for patients with multiple sclerosis and other immune-mediated diseases. SIGNIFICANCE: Although animal studies have generated a growing interest in the anti-inflammatory potential of mesenchymal stem cells (MSCs) for the treatment of autoimmune diseases, MSCs possess the capacity to both limit and promote immune responses. Yet relatively little is known about human-MSC modulation of human disease-implicated T-cell responses, or the mechanisms underlying such modulation. The current study reveals a novel prostaglandin E2-dependent and myeloid cell-mediated mechanism by which human MSCs can reciprocally regulate human Th17 and Th1 responses, with implications for the use of MSCs as a potential therapeutic for patients with multiple sclerosis and other immune-mediated diseases.

10.
J Biomed Mater Res A ; 101(3): 694-703, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22941911

ABSTRACT

Intimal hyperplasia and thrombosis are responsible for the poor patency rates of small-diameter vascular grafts. These complications could be avoided by a rapid and strong adhesion of endothelial cells to the prosthetic surfaces, which typically consist of expanded polytetrafluoroethylene (PTFE) for small-diameter vessels. We have previously described two peptide micropatterning strategies that increase the endothelialization rates of PTFE. The micropatterns were generated either by inkjet printing 300 µm squares or by spraying 10.1 ± 0.1 µm diameter droplets of the CGRGDS cell adhesion peptide, while the remaining surface was functionalized using the CWQPPRARI cell migration peptide. We now directly compare these two micropatterning strategies and examine the effect of hydrodynamic stress on human saphenous vein endothelial cells grown on the patterned surfaces. No significant differences in cell adhesion were observed between the two micropatterning methods. When compared to unpatterned surfaces treated with a uniform mixture of the two peptides, the cell expansion was significantly higher on sprayed or printed surfaces after 9 days of static cell culture. In addition, after 6 h of exposure to hydrodynamic stress, the cell retention and cell cytoskeleton reorganization on the patterned surfaces was improved when compared to untreated or random treated surfaces. These results indicate that micropatterned surfaces lead to improved rates of PTFE endothelialization with higher resistance to hydrodynamic stress.


Subject(s)
Blood Vessel Prosthesis , Endothelial Cells/metabolism , Peptides/chemistry , Polytetrafluoroethylene/chemistry , Saphenous Vein/metabolism , Stress, Physiological , Cell Adhesion , Cell Proliferation , Cells, Cultured , Cytoskeleton/metabolism , Endothelial Cells/cytology , Humans , Hydrodynamics , Saphenous Vein/cytology
11.
Mol Cancer ; 10: 121, 2011 Sep 24.
Article in English | MEDLINE | ID: mdl-21943176

ABSTRACT

BACKGROUND: The CCL2 chemokine is involved in promoting cancer angiogenesis, proliferation and metastasis by malignancies that express CCR2 receptor. Thus the CCL2/CCR2 axis is an attractive molecular target for anticancer drug development. METHODS: We have generated a novel fusion protein using GMCSF and an N-terminal truncated version of MCP1/CCL2 (6-76) [hereafter GMME1] and investigated its utility as a CCR2-specific tumoricidal agent. RESULTS: We found that distinct to full length CCL2 or its N-truncated derivative (CCL2 5-76), GMME1 bound to CCR2 on mouse lymphoma EG7, human multiple myeloma cell line U266, or murine and human medulloblastoma cell lines, and led to their death by apoptosis. We demonstrated that GMME1 specifically blocked CCR2-associated STAT3 phosphorylation and up-regulated pro-apoptotic BAX. Furthermore, GMME1 significantly inhibited EG7 tumor growth in C57BL/6 mice, and induced apoptosis of primary myeloma cells from patients. CONCLUSION: Our data demonstrate that GMME1 is a fusokine with a potent, CCR2 receptor-mediated pro-apoptotic effect on tumor cells and could be exploited as a novel biological therapy for CCR2+ malignancies including lymphoid and central nervous system malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Chemokine CCL2/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, CCR2/metabolism , Recombinant Fusion Proteins/pharmacology , Animals , Antigens, CD/metabolism , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Female , Humans , Lymphoma , Medulloblastoma , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/therapeutic use , Tumor Burden , Xenograft Model Antitumor Assays
12.
Expert Rev Neurother ; 11(9): 1295-303, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21864075

ABSTRACT

Phase I clinical trials exploring the use of autologous mesenchymal stem cell (MSC) therapy for the treatment of multiple sclerosis (MS) have begun in a number of centers across the world. MS is a complex and chronic immune-mediated and neurodegenerative disease influenced by genetic susceptibility and environmental risk factors. The ideal treatment for MS would involve both attenuation of detrimental inflammatory responses, and induction of a degree of tissue protection/regeneration within the CNS. Preclinical studies have demonstrated that both human-derived and murine-derived MSCs are able to improve outcomes in the animal model of MS, experimental autoimmune encephalomyelitis. How MSCs ameliorate experimental autoimmune encephalomyelitis is being intensely investigated. One of the major mechanisms of action of MSC therapy is to inhibit various components of the immune system that contribute to tissue destruction. Emerging evidence now supports the idea that MSCs can access the CNS where they can provide protection against tissue damage, and may facilitate tissue regeneration through the production of growth factors. The prospect of cell-based therapy using MSCs has several advantages, including the relative ease with which they can be extracted from autologous bone marrow or adipose tissue and expanded in vitro to reach the purity and numbers required for transplantation, and the fact that MSC therapy has already been used in other human disease settings, such as graft-versus-host and cardiac disease, with initial reports indicating a good safety profile. This article will focus on the theoretical and practical issues relevant to considerations of MSC therapy in the context of MS.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Multiple Sclerosis/therapy , Animals , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Encephalomyelitis, Autoimmune, Experimental/therapy , Humans , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/physiopathology
13.
J Immunol ; 185(12): 7358-66, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21076067

ABSTRACT

We have previously shown that the fusion of GM-CSF and IL-21 (GIFT-21) possesses a potent immune stimulatory effect on myeloid cells. In this study, we define the effect of GIFT-21 on naive murine monocytes (GIFT-21 dendritic cells [DCs]), which express increased levels of Gr-1, CD45R, MHC class I, CD80, CD86, and CXCR4 and suppress CD11c and MHC class II. Compared with conventional dendritic cells, GIFT-21 DCs produced substantially more CCL2, IL-6, TNF-α, and IFN-α and induced significantly greater production of IFN-γ by CD8(+) T cells in MHC class I-restricted Ag presentation assays. B16 melanoma and D2F2 Neu breast cancer growth was inhibited in mice treated with Ag-naive GIFT-21 DCs. This effect was lost in CD8(-/-) and CCR2(-/-) mice and when mice were treated with ß(2)-microglobulin-deficient GIFT-21 DCs, indicating that GIFT-21 DCs migrated to and sampled from the tumors to present tumor Ags to CCL2 recruited CD8(+) T cells via MHC class I. We propose that autologous GIFT-21 DCs may serve as a cell therapy platform for the treatment of cancer.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Immunity, Cellular/drug effects , Interleukins/immunology , Mammary Neoplasms, Experimental/immunology , Melanoma/immunology , Recombinant Fusion Proteins/pharmacology , Adoptive Transfer , Animals , Antigen Presentation/drug effects , Antigen Presentation/genetics , Antigen Presentation/immunology , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Movement/immunology , Cytokines/genetics , Cytokines/immunology , Dendritic Cells/transplantation , Female , Immunity, Cellular/genetics , Immunity, Cellular/immunology , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/therapy , Melanoma/genetics , Melanoma/therapy , Mice , Mice, Inbred BALB C , Mice, Knockout , Transplantation, Autologous
14.
Cancer Res ; 70(20): 7742-7, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20924101

ABSTRACT

It is unknown whether mesenchymal stromal cells (MSC) can regulate immune responses targeting tumor autoantigens of low immunogenicity. We tested here whether immunization with MSC could break immune tolerance towards the ErbB-2/HER-2/neu tumor antigen and the effects of priming with IFN-γ and tumor necrosis factor-α (TNF-α) on this process. BALB/c- and C57BL/6-derived MSC were lentivirally transduced to express a kinase-inactive rat neu mutant (MSC/Neu). Immunization of BALB/c mice with nontreated or IFN-γ-primed allogeneic or syngeneic MSC/Neu induced similar levels of anti-neu antibody titers; however, only syngeneic MSC/Neu induced protective neu-specific CD8(+) T cell responses. Compared to immunization with nontreated or IFN-γ-primed syngeneic MSC/Neu, the number of circulating neu-specific CD8(+) T cells and titers of anti-neu antibodies were observed to be decreased after immunizations with IFN-γ- plus TNF-α-primed MSC/Neu. In addition, syngeneic MSC/Neu seemed more efficient than IFN-γ-primed MSC/Neu at inducing a protective therapeutic antitumor immune response resulting in the regression of transplanted neu-expressing mammary tumor cells. In vitro antigen-presenting cell assays performed with paraformaldehyde-fixed or live MSC showed that priming with IFN-γ plus TNF-α, compared to priming with IFN-γ alone, increased antigen presentation as well as the production of immunosuppressive factors. These data suggest that whereas MSC could effectively serve as antigen-presenting cells to induce immune responses aimed at tumor autoantigens, these functions are critically regulated by IFN-γ and TNF-α.


Subject(s)
Breast Neoplasms/immunology , Interferon-gamma/therapeutic use , Mammary Neoplasms, Experimental/immunology , Mesenchymal Stem Cells/immunology , Receptor, ErbB-2/biosynthesis , Tumor Necrosis Factor-alpha/therapeutic use , Animals , Breast Neoplasms/therapy , Cancer Vaccines/therapeutic use , Female , Humans , Mammary Neoplasms, Experimental/pathology , Mammary Tumor Virus, Mouse/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Promoter Regions, Genetic , Rats , Stromal Cells/immunology , Stromal Cells/pathology
15.
Am J Physiol Renal Physiol ; 299(6): F1288-98, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20844023

ABSTRACT

Acute kidney injury (AKI) can occur from the toxic side-effects of chemotherapeutic agents such as cisplatin. Bone marrow-derived mesenchymal stromal cells (MSCs) have demonstrated wide therapeutic potential often due to beneficial factors they secrete. The goal of this investigation was to evaluate in vitro the effect of human MSCs (hMSCs) secretome on cisplatin-treated human kidney cells, and in vivo the consequence of hMSCs intraperitoneal (ip) implantation in mice with AKI. Our results revealed that hMSCs-conditioned media improved survival of HK-2 human proximal tubular cells exposed to cisplatin in vitro. This enhanced survival was linked to increased expression of phosphorylated Akt (Ser473) and was reduced by a VEGF-neutralizing antibody. In vivo testing of these hMSCs established that ip administration in NOD-SCID mice decreased cisplatin-induced kidney function impairment, as demonstrated by lower blood urea nitrogen levels and higher survival. In addition, blood phosphorous and amylase levels were also significantly decreased. Moreover, hMSCs reduced the plasma levels of several inflammatory cytokines/chemokines. Immunohistochemical examination of kidneys showed less apoptotic and more proliferating cells. Furthermore, PCR indicated the presence of hMSCs in mouse kidneys, which also showed enhanced expression of phosphorylated Akt. In conclusion, our study reveals that hMSCs can exert prosurvival effects on renal cells in vitro and in vivo, suggests a paracrine contribution for kidney protective abilities of hMSCs delivered ip, and supports their clinical potential in AKI.


Subject(s)
Acute Kidney Injury/therapy , Cisplatin/adverse effects , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Animals , Cell Proliferation/drug effects , Cells, Cultured , Culture Media, Conditioned/pharmacology , Cytokines/blood , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , Stromal Cells/physiology
16.
Ann Neurol ; 68(4): 540-5, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20661924

ABSTRACT

Human mesenchymal stem cells (hMSCs) are being considered for clinical trials of multiple sclerosis (MS). We examined the effects of adult bone marrow-derived hMSCs on responses of primary human Th1, Th17, and Th1/17 double-expressing T-cell subsets, all implicated in MS. As expected, soluble products from hMSCs inhibited Th1 responses; however, Th17 responses were increased. Secretion of interleukin (IL)-10, considered anti-inflammatory, was decreased. Pretreating hMSCs with the proinflammatory cytokine IL-1ß accentuated these effects, and caused decreases in the Th1/17 subset. These findings underscore the importance of further preclinical work and immune-monitoring to define hMSC effects on disease-relevant immune responses under variable conditions.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Mesenchymal Stem Cells/immunology , Th1 Cells/cytology , Antigens, CD/metabolism , CD4-Positive T-Lymphocytes/classification , CD4-Positive T-Lymphocytes/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Culture Media, Conditioned/pharmacology , Cytokines/immunology , Cytokines/pharmacology , Enzyme-Linked Immunosorbent Assay/methods , Flow Cytometry/methods , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Lymphocyte Activation/immunology , Mesenchymal Stem Cells/chemistry , T-Lymphocytes, Helper-Inducer/classification , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , Th1 Cells/immunology
17.
Nat Med ; 15(9): 1038-45, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19668193

ABSTRACT

We have previously shown that a granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-15 (IL-15) 'fusokine' (GIFT15) exerts immune suppression via aberrant signaling through the IL-15 receptor on lymphomyeloid cells. We show here that ex vivo GIFT15 treatment of mouse splenocytes generates suppressive regulatory cells of B cell ontogeny (hereafter called GIFT15 B(reg) cells). Arising from CD19+ B cells, GIFT15 B(reg) cells express major histocompatibility complex class I (MHCI) and MHCII, surface IgM and IgD, and secrete IL-10, akin to previously described B10 and T2-MZP B(reg) cells, but lose expression of the transcription factor PAX5, coupled to upregulation of CD138 and reciprocal suppression of CD19. Mice with experimental autoimmune encephalomyelitis went into complete remission after intravenous infusion of GIFT15 B(reg) cells paralleled by suppressed neuroinflammation. The clinical effect was abolished when GIFT15 B(reg) cells were derived from mmicroMT (lacking B cells), MHCII-knockout, signal transducer and activator of transcription-6 (STAT-6)-knockout, IL-10-knockout or allogeneic splenocytes, consistent with a pivotal role for MHCII and IL-10 by sygeneic B cells for the observed therapeutic effect. We propose that autologous GIFT15 B(reg) cells may serve as a new treatment for autoimmune ailments.


Subject(s)
B-Lymphocyte Subsets/drug effects , B-Lymphocyte Subsets/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Interleukin-15/pharmacology , Recombinant Fusion Proteins/pharmacology , Animals , B-Lymphocyte Subsets/transplantation , Cytokines , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/metabolism , Immune Tolerance/drug effects , In Vitro Techniques , Interferon-gamma/biosynthesis , Interleukin-10/biosynthesis , Mice , Mice, Knockout , Mice, Transgenic , Recombinant Proteins , STAT6 Transcription Factor/deficiency , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/immunology , Transplantation, Homologous , Transplantation, Isogeneic
18.
Blood ; 114(13): 2632-8, 2009 Sep 24.
Article in English | MEDLINE | ID: mdl-19654411

ABSTRACT

Recent studies involving bone marrow mesenchymal stromal cells (MSCs) demonstrated that interferon (IFN)-gamma stimulation induces major histocompatibility complex (MHC) class II-mediated antigen presentation in MSCs both in vitro and in vivo. Concordantly, we investigated the ability of MSCs to present extracellular antigen through their MHC class I molecules, a process known as cross-presentation. Using an in vitro antigen presentation assay, we demonstrated that murine MSCs can cross-present soluble ovalbumin (OVA) to naive CD8(+) T cells from OT-I mice. Cross-presentation by MSC was proteasome dependent and partly dependent on transporter associated with antigen-processing molecules. Pretreatment of MSC with IFN-gamma increased cross-presentation by up-regulating antigen processing and presentation. However, although the transcription of the transporter associated with antigen processing-1 molecules and the immunoproteasome subunit LMP2 induced by IFN-gamma was inhibited by transforming growth factor-beta, the overall cross-presentation capacity of MSCs remained unchanged after transforming growth factor-beta treatment. These observations were validated in vivo by performing an immune reconstitution assay in beta(2)-microglobulin(-/-) mice and show that OVA cross-presentation by MSCs induces the proliferation of naive OVA-specific CD8(+) T cells. In conclusion, we demonstrate that MSCs can cross-present exogenous antigen and induce an effective CD8(+) T-cell immune response, a property that could be exploited as a therapeutic cell-based immune biopharmaceutic for the treatment of cancer or infectious diseases.


Subject(s)
Antigen-Presenting Cells/immunology , Antigens/immunology , Cross-Priming/immunology , Mesenchymal Stem Cells/immunology , Stromal Cells/immunology , Animals , Antigen Presentation/immunology , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/physiology , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Female , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin/immunology , Solubility , Stromal Cells/metabolism , Stromal Cells/physiology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/physiology , beta 2-Microglobulin/genetics
19.
Blood ; 114(15): 3181-90, 2009 Oct 08.
Article in English | MEDLINE | ID: mdl-19587377

ABSTRACT

Gaucher disease causes pathologic skeletal changes that are not fully explained. Considering the important role of mesenchymal stromal cells (MSCs) in bone structural development and maintenance, we analyzed the cellular biochemistry of MSCs from an adult patient with Gaucher disease type 1 (N370S/L444P mutations). Gaucher MSCs possessed a low glucocerebrosidase activity and consequently had a 3-fold increase in cellular glucosylceramide. Gaucher MSCs have a typical MSC marker phenotype, normal osteocytic and adipocytic differentiation, growth, exogenous lactosylceramide trafficking, cholesterol content, lysosomal morphology, and total lysosomal content, and a marked increase in COX-2, prostaglandin E2, interleukin-8, and CCL2 production compared with normal controls. Transcriptome analysis on normal MSCs treated with the glucocerebrosidase inhibitor conduritol B epoxide showed an up-regulation of an array of inflammatory mediators, including CCL2, and other differentially regulated pathways. These cells also showed a decrease in sphingosine-1-phosphate. In conclusion, Gaucher disease MSCs display an altered secretome that could contribute to skeletal disease and immune disease manifestations in a manner distinct and additive to Gaucher macrophages themselves.


Subject(s)
Bone Marrow Cells/metabolism , Chemokine CCL2/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Gaucher Disease/metabolism , Inflammation Mediators/metabolism , Interleukin-8/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Amino Acid Substitution , Bone Marrow Cells/pathology , Cell Differentiation/drug effects , Cells, Cultured , Chemokine CCL2/biosynthesis , Chemokine CCL2/genetics , Cholesterol/genetics , Cholesterol/metabolism , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , Dinoprostone/biosynthesis , Dinoprostone/genetics , Enzyme Inhibitors/pharmacology , Female , Gaucher Disease/genetics , Gaucher Disease/pathology , Glucosylceramidase/antagonists & inhibitors , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Glucosylceramides/genetics , Glucosylceramides/metabolism , Humans , Inositol/analogs & derivatives , Inositol/pharmacology , Interleukin-8/biosynthesis , Interleukin-8/genetics , Lysosomes/metabolism , Lysosomes/pathology , Male , Middle Aged , Mutation, Missense , Osteocytes/metabolism , Osteocytes/pathology , Stromal Cells/metabolism , Stromal Cells/pathology , Up-Regulation/drug effects , Up-Regulation/genetics
20.
J Immunol ; 183(3): 1759-66, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19592643

ABSTRACT

CCR2 is a chemokine receptor widely expressed by lymphomyeloid cells involved in maladaptive autoimmune ailments. Therefore CCR2 is of great interest as a biological target for immune suppression due to its direct implication in autoimmune diseases such as rheumatoid arthritis. We have generated a novel fusion protein using GM-CSF and an N-terminal truncated version of MCP-1/CCL2 (6-76, GMME1) and investigated its utility as a CCR2-specific immune suppressor. Using BRET studies, we found that distinct to CCL2, GMME1 binding to CCR2 led to altered conformational changes in the CCR2 homodimer and did not induce the recruitment of beta-arrestin 2 to the receptor. However, CCR2-dependent calcium mobilization, BAX induction and caspase-3 activation followed by cell death was observed. Using Th17 cells harvested from DBA/1 mice ill with bovine collagen-induced arthritis, we demonstrate that GMME1 is capable of blocking their production of IL-17 in vitro. Upon its delivery to mice symptomatic with inflammatory arthritis, a robust clinical recovery occurred with decreased paw thickness to normal levels and a significant reduction in anti-collagen Ab titer and rheumatoid factor titer, as well as reduction of proinflammatory cytokines levels both intraarticular and systemic. Our data demonstrate that GMME1 is a powerful synthetic suppressor cytokine that coopts CCR2-dependent cellular signaling and blunts the effects of CCR2-expressing lymphomyeloid cells causative of autoimmune arthritis.


Subject(s)
Arthritis, Experimental/drug therapy , Chemokine CCL2/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Protein Engineering/methods , Receptors, CCR2/metabolism , Recombinant Fusion Proteins/pharmacology , Animals , Arthritis, Experimental/prevention & control , Cells, Cultured , Disease Models, Animal , Inflammation/drug therapy , Inflammation/prevention & control , Interleukin-17 , Mice , Protein Binding , Receptors, CCR2/chemistry , Recombinant Fusion Proteins/therapeutic use , T-Lymphocyte Subsets
SELECTION OF CITATIONS
SEARCH DETAIL