Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(4): e0196375, 2018.
Article in English | MEDLINE | ID: mdl-29672645

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0194575.].

2.
PLoS One ; 13(3): e0194575, 2018.
Article in English | MEDLINE | ID: mdl-29566024

ABSTRACT

Evolutionary radiations are fascinating phenomena corresponding to a dramatic diversification of taxa and a burst of cladogenesis over short periods of time. Most evolutionary radiations have long been regarded as adaptive but this has seldom been demonstrated with large-scale comparative datasets including fossil data. Originating in the Early Jurassic, irregular echinoids are emblematic of the spectacular diversification of mobile marine faunas during the Mesozoic Marine Revolution. They diversified as they colonized various habitats, and now constitute the main component of echinoid fauna in modern seas. The evolutionary radiation of irregular echinoids has long been considered as adaptive but this hypothesis has never been tested. In the present work we analyze the evolution of echinoid species richness and morphological disparity over 37 million years based on an extensive fossil dataset. Our results demonstrate that morphological and functional diversifications in certain clades of irregular echinoids were exceptionally high compared to other clades and that they were associated with the evolution of new modes of life and so can be defined as adaptive radiations. The role played by ecological opportunities in the diversification of these clades was critical, with the evolution of the infaunal mode of life promoting the adaptive radiation of irregular echinoids.


Subject(s)
Biodiversity , Biological Evolution , Genetic Speciation , Sea Urchins/genetics , Animals , Ecology , Fossils , Oceans and Seas , Phylogeny
3.
Appl Opt ; 53(22): 4903-9, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25090320

ABSTRACT

Magnetic-liquid deformable mirrors (MLDMs) were introduced by our group in 2004 and numerous developments have been made since then. The usefulness of this type of mirror in various applications has already been shown, but experimental data on their dynamics are still lacking. A complete theoretical modeling of MLDM dynamics is a complex task because it requires an approach based on magnetohydrodynamics. A purpose of this paper is to present and analyze new experimental data of the dynamics of these mirrors from open-loop step response measurements and show that a basic transfer function modeling is adequate to achieve closed-loop control. Also, experimental data on the eigenmodes dynamic is presented and a modal-based control approach is suggested.

SELECTION OF CITATIONS
SEARCH DETAIL
...