Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(11): e0142512, 2015.
Article in English | MEDLINE | ID: mdl-26575371

ABSTRACT

The mediation of fluid homeostasis by multiple classes of aquaporins has been suggested to be essential during spermatogenesis and spermiation. In the marine teleost gilthead seabream (Sparus aurata), seven distinct aquaporins, Aqp0a, -1aa, -1ab, -7, -8b, -9b and -10b, are differentially expressed in the somatic and germ cell lineages of the spermiating testis, but the endocrine regulation of these channels during germ cell development is unknown. In this study, we investigated the in vivo developmental expression of aquaporins in the seabream testis together with plasma androgen concentrations. We then examined the in vitro regulatory effects of recombinant piscine gonadotropins, follicle-stimulating (rFsh) and luteinizing (rLh) hormones, and sex steroids on aquaporin mRNA levels during the spermatogenic cycle. During the resting phase, when plasma levels of androgens were low, the testis exclusively contained proliferating spermatogonia expressing Aqp1ab, whereas Aqp10b and -9b were localized in Sertoli and Leydig cells, respectively. At the onset of spermatogenesis and during spermiation, the increase of androgen plasma levels correlated with the additional appearance of Aqp0a and -7 in Sertoli cells, Aqp0a in spermatogonia and spermatocytes, Aqp1ab, -7 and -10b from spermatogonia to spermatozoa, and Aqp1aa and -8b in spermatids and spermatozoa. Short-term in vitro incubation of testis explants indicated that most aquaporins in Sertoli cells and early germ cells were upregulated by rFsh and/or rLh through androgen-dependent pathways, although Aqp1ab in proliferating spermatogonia was also activated by estrogens. However, expression of Aqp9b in Leydig cells, and of Aqp1aa and -7 in spermatocytes and spermatids, was also directly stimulated by rLh. These results reveal a complex gonadotropic control of aquaporin expression during seabream germ cell development, apparently involving both androgen-dependent and independent pathways, which may assure the fine tuning of aquaporin-mediated fluid secretion and absorption mechanisms in the seabream testis.


Subject(s)
Androgens/physiology , Aquaporins/metabolism , Fish Proteins/metabolism , Gonadotropins/physiology , Sea Bream/physiology , Spermatogenesis , Animals , Aquaporins/genetics , Endothelium, Vascular/metabolism , Female , Fish Proteins/genetics , Follicle Stimulating Hormone/physiology , Gene Expression , Gene Expression Regulation , Luteinizing Hormone/physiology , Male , Signal Transduction , Testis/metabolism , Tissue Culture Techniques
2.
Biol Bull ; 229(1): 93-108, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26338872

ABSTRACT

Fluid homeostasis is recognized as a critical factor during the development, maturation, and function of vertebrate male germ cells. These processes have been associated with the presence of multiple members of the aquaporin superfamily of water and solute channels in different cell types along the reproductive tract as well as in spermatozoa. We present a comparative analysis of the existing knowledge of aquaporin biology in the male reproductive tissues of mammals and teleosts. Current data suggest that in both vertebrate groups, aquaporins may have similar functions during differentiation of spermatozoa in the germinal epithelium, in the concentration and maturation of sperm in the testicular ducts, and in the regulation of osmotically induced volume changes in ejaculated spermatozoa. Recent studies have also provided insight into the possible function of aquaporins beyond water transport, such as in signaling pathways during spermatogenesis or the sensing of cell swelling and mitochondrial peroxide transport in activated sperm. However, an understanding of the specific physiological functions of the various aquaporins during germ cell development and sperm motility, as well as the molecular mechanisms involved, remains elusive. Novel experimental approaches need to be developed to elucidate these processes and to dissect the regulatory intracellular pathways implicated, which will greatly help to uncover the molecular basis of sperm physiology and male fertility in vertebrates.


Subject(s)
Aquaporins/metabolism , Spermatogenesis/physiology , Spermatozoa/physiology , Animals , Aquaporins/genetics , Fishes , Gene Expression Regulation , Male , Mammals
3.
Biol Reprod ; 93(2): 40, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26134868

ABSTRACT

In marine teleosts, such as the gilthead seabream, several aquaporin paralogs are known to be expressed during the hyperosmotic induction of spermatozoon motility in seawater. Here, we used immunological inhibition of channel function to investigate the physiological roles of Aqp1aa, Aqp1ab, and Aqp7 during seabream sperm activation. Double immunofluorescence microscopy of SW-activated sperm showed that Aqp1aa and Aqp7 were respectively distributed along the flagellum and the head, whereas Aqp1ab accumulated in the head and in discrete areas toward the anterior tail. Inhibition of Aqp1aa reduced the rise of intracellular Ca(2+), which is independent of external Ca(2+) and normally occurs upon activation, and strongly inhibited sperm motility. Impaired Aqp1aa function also prevented the intracellular trafficking of Aqp8b to the mitochondrion, where it acts as a peroxiporin allowing H2O2 efflux and ATP production during activation. However, restoring the Ca(2+) levels with a Ca(2+) ionophore in spermatozoa with immunosuppressed Aqp1aa function fully rescued mitochondrial Aqp8b accumulation and sperm motility. In contrast, exposure of sperm to Aqp1ab and Aqp7 antibodies did not affect motility during the initial phase of activation, but latently compromised the trajectory and the pattern of movement. These data reveal the coordinated action of spatially segregated aquaporins during sperm motility activation in a marine teleost, where flagellar-localized Aqp1aa plays a dual Ca(2+)-dependent role controlling the initiation of sperm motility and the activation of mitochondrial detoxification mechanisms, while Aqp1ab and Aqp7 in the head and anterior tail direct the motion pattern.


Subject(s)
Aquaporins/physiology , Sea Bream/physiology , Sperm Motility/physiology , Adenosine Triphosphate/biosynthesis , Animals , Antibodies, Blocking/pharmacology , Aquaporin 1/metabolism , Aquaporin 1/physiology , Aquaporins/antagonists & inhibitors , Aquaporins/genetics , Calcium Signaling/genetics , Calcium Signaling/physiology , Flagella/metabolism , Hydrogen Peroxide/metabolism , Male , Mitochondria/metabolism , Oocytes/metabolism , Osmotic Pressure , Spermatozoa/drug effects , Spermatozoa/metabolism , Xenopus laevis
4.
Sci Rep ; 5: 7789, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25586329

ABSTRACT

Reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2), cause oxidative cell damage and inhibit sperm function. In most oviparous fishes that spawn in seawater (SW), spermatozoa may be exposed to harmful ROS loads associated with the hyperosmotic stress of axonemal activation and ATP synthesis from mitochondrial oxidative phosphorylation. However, it is not known how marine spermatozoa can cope with the increased ROS levels to maintain flagellar motility. Here, we show that a marine teleost orthologue of human aquaporin-8, termed Aqp8b, is rapidly phosphorylated and inserted into the inner mitochondrial membrane of SW-activated spermatozoa, where it facilitates H2O2 efflux from this compartment. When Aqp8b intracellular trafficking and mitochondrial channel activity are immunologically blocked in activated spermatozoa, ROS levels accumulate in the mitochondria leading to mitochondrial membrane depolarisation, the reduction of ATP production, and the progressive arrest of sperm motility. However, the decreased sperm vitality underlying Aqp8b loss of function is fully reversed in the presence of a mitochondria-targeted antioxidant. These findings reveal a previously unknown detoxification mechanism in spermatozoa under hypertonic conditions, whereby mitochondrial Aqp8b-mediated H2O2 efflux permits fuel production and the maintenance of flagellar motility.


Subject(s)
Aquaporins/metabolism , Hydrogen Peroxide/metabolism , Mitochondria/metabolism , Sea Bream/metabolism , Sperm Motility , Adenosine Triphosphate/metabolism , Animals , Antibodies/pharmacology , Antioxidants/pharmacology , Biological Transport/drug effects , Blotting, Western , Cell Membrane/drug effects , Cell Membrane/metabolism , Cyclic N-Oxides/pharmacology , Female , Male , Mitochondria/drug effects , Oocytes/drug effects , Oocytes/metabolism , Oxidative Phosphorylation/drug effects , Phosphorylation/drug effects , Seawater , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/metabolism , Xenopus laevis
5.
Gen Comp Endocrinol ; 221: 75-85, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25449660

ABSTRACT

In flatfishes with asynchronous and semicystic spermatogenesis, such as the Senegalese sole (Solea senegalensis), the specific roles of the pituitary gonadotropins during germ cell development, particularly of the follicle-stimulating hormone (Fsh), are still largely unknown in part due to the lack of homologous immunoassays for this hormone. In this study, an enzyme-linked immunosorbent assay (ELISA) for Senegalese sole Fsh was developed by generating a rabbit antiserum against a recombinant chimeric single-chain Fsh molecule (rFsh-C) produced by the yeast Pichia pastoris. The rFsh-C N- and C-termini were formed by the mature sole Fsh ß subunit (Fshß) and the chicken glycoprotein hormone common α subunit (CGA), respectively. Depletion of the antiserum to remove anti-CGA antibodies further enriched the sole Fshß-specific antibodies, which were used to develop the ELISA using the rFsh-C for the standard curve. The sensitivity of the assay was 10 and 50 pg/ml for Fsh measurement in plasma and pituitary, respectively, and the cross-reactivity with a homologous recombinant single-chain luteinizing hormone was 1%. The standard curve for rFsh-C paralleled those of serially diluted plasma and pituitary extracts of other flatfishes, such as the Atlantic halibut, common sole and turbot. In Senegalese sole males, the highest plasma Fsh levels were found during early spermatogenesis but declined during enhanced spermiation, as found in teleosts with cystic spermatogenesis. In pubertal males, however, the circulating Fsh levels were as high as in adult spermiating fish, but interestingly the Fsh receptor in the developing testis containing only spermatogonia was expressed in Leydig cells but not in the primordial Sertoli cells. These results indicate that a recombinant chimeric Fsh can be used to generate specific antibodies against the Fshß subunit and to develop a highly sensitive ELISA for Fsh measurements in diverse flatfishes.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Flatfishes/metabolism , Follicle Stimulating Hormone/metabolism , Gonadotropins/metabolism , Recombinant Proteins/metabolism , Animals , Antibodies/metabolism , Binding, Competitive , Follicle Stimulating Hormone/blood , Follicle Stimulating Hormone, beta Subunit/metabolism , Glycoprotein Hormones, alpha Subunit/metabolism , Humans , Rabbits , Reference Standards , Reproducibility of Results , Reproduction , Species Specificity
6.
Biol Reprod ; 89(2): 37, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23782838

ABSTRACT

In oviparous vertebrates such as the marine teleost gilthead seabream, water and fluid homeostasis associated with testicular physiology and the external activation of spermatozoa is potentially mediated by multiple aquaporins. To test this hypothesis, we isolated five novel members of the aquaporin superfamily from gilthead seabream and developed paralog-specific antibodies to localize the cellular sites of protein expression in the male reproductive tract. Together with phylogenetic classification, functional characterization of four of the newly isolated paralogs, Aqp0a, -7, -8b, and -9b, demonstrated that they were water permeable, while Aqp8b was also permeable to urea, and Aqp7 and -9b were permeable to glycerol and urea. Immunolocalization experiments indicated that up to seven paralogous aquaporins are differentially expressed in the seabream testis: Aqp0a and -9b in Sertoli and Leydig cells, respectively; Aqp1ab, -7, and -10b from spermatogonia to spermatozoa; and Aqp1aa and -8b in spermatids and sperm. In the efferent duct, only Aqp10b was found in the luminal epithelium. Ejaculated spermatozoa showed a segregated spatial distribution of five aquaporins: Aqp1aa and -7 in the entire flagellum or the head, respectively, and Aqp1ab, -8b, and -10b both in the head and the anterior tail. The combination of immunofluorescence microscopy and biochemical fractionation of spermatozoa indicated that Aqp10b and phosphorylated Aqp1ab are rapidly translocated to the head plasma membrane upon activation, whereas Aqp8b accumulates in the mitochondrion of the spermatozoa. In contrast, Aqp1aa and -7 remained unchanged. These data reveal that aquaporin expression in the teleost testis shares conserved features of the mammalian system, and they suggest that the piscine channels may play different roles in water and solute transport during spermatogenesis, sperm maturation and nutrition, and the initiation and maintenance of sperm motility.


Subject(s)
Aquaporins/metabolism , Germ Cells/metabolism , Spermatozoa/metabolism , Animals , Aquaporins/genetics , Male , Phylogeny , Sea Bream , Sperm Motility/genetics , Spermatogenesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...