Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Matrix Biol ; 107: 97-112, 2022 03.
Article in English | MEDLINE | ID: mdl-35167945

ABSTRACT

Dysregulation of cathepsin S (Cat S), a cysteine protease involved in extracellular-matrix and basement membrane (BM) degradation, is a concomitant feature of several inflammatory skin diseases. Therefore, Cat S has been suggested as a potential therapeutic target. Flavonoids, which were identified as regulatory molecules of various proteolytic enzymes, exert beneficial effects on skin epidermis. Herein, thirteen flavonoid compounds were screened in vitro and in silico and neohesperidin dihydrochalcone (NHDC) was identified as a potent, competitive, and selective inhibitor (Ki=8±1 µM) of Cat S. Furthermore, Cat S-dependent hydrolysis of nidogen-1, a keystone protein of BM architecture, as well elastin, collagens I and IV was impaired by NHDC, while both expression and activity of Cat S were significantly reduced in NHDC-treated human keratinocytes. Moreover, a reconstructed human skin model showed a significant decrease of both mRNA and protein levels of Cat S after NHDC treatment. Conversely, the expression of nidogen-1 was significantly increased. NHDC raised IL-10 expression, an anti-inflammatory cytokine, and mediated STAT3 signaling pathway, which in turn dampened Cat S expression. Our findings support that NHDC may represent a valuable scaffold for structural improvement and development of Cat S inhibitors to preserve the matrix integrity and favor skin homeostasis during inflammatory events.


Subject(s)
Chalcones , Hesperidin , Cathepsins/genetics , Chalcones/pharmacology , Chalcones/therapeutic use , Hesperidin/analogs & derivatives , Hesperidin/pharmacology , Hesperidin/therapeutic use , Humans
2.
J Mol Graph Model ; 113: 108153, 2022 06.
Article in English | MEDLINE | ID: mdl-35183977

ABSTRACT

Human cysteine cathepsins are lysosomal proteases, which are involved in different biological processes. Their enzymatic activity can be regulated by glycosaminoglycans (GAGs): long linear periodic negatively charged polysaccharides, which dimeric building blocks consist of uronic acid and hexosamine monosaccharide units. In this study, molecular docking simulations of chondroitin 4-sulfate, chondroitin 6-sulfate, heparin, heparan sulfate, dermatan sulfate and hyaluronic acid of various chain lengths were performed with cathepsins B, L, K, S and V and followed by molecular dynamics-based refinement and binding free energy analysis. We concluded that electrostatics might be a driving force for cathepsin-GAG interactions; indeed as in most of characterised systems, the increase of GAG chain length consequently leads to a more pronounced effect on the strength of cathepsin-GAG interactions. Results also suggest that binding of GAGs at different regions on cathepsins surface affect differently their enzymatic activity and could is dependent on cathepsin and GAG type. Present data contribute to systematic description of cathepsin-GAG interactions, which is helpful in understanding the subtle molecular mechanisms of protease regulation behind their biological functions.


Subject(s)
Cysteine , Glycosaminoglycans , Cathepsins/chemistry , Cathepsins/metabolism , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/metabolism , Glycosaminoglycans/chemistry , Humans , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...