Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 467: 133646, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38330651

ABSTRACT

The exposure of terrestrial organisms to soils freshly contaminated by polycyclic aromatic compounds (PACs, including PAHs and polar-PACs) is known to cause significant toxicity effects. However, historically contaminated soils, such as former coking plant soils, usually induce a limited toxic impact, due to the "aging" phenomenon which is the result of several processes causing a reduction of PAC availability over time. For a better understanding of these behaviors, this study aimed to compare the toxic responses of terrestrial organisms exposed to aged contaminated soils and their counterparts submitted to a moderate heating process applied to increase PAC availability. Two aged "raw" soils (limited PAC availability) were selected for their representativeness of former industrial soils in terms of PAC contamination. These soils were submitted either to moderate heating (expected PAC availability increase) or solvent-extraction (expected PAC removal). Physico-chemical parameters, contamination levels and availability were determined for these three soil modalities. Additionally, standardized limit bioassays on plants and earthworms were performed to assess soil ecotoxicity. The findings demonstrated that historically contaminated soils exposed to moderate heating induced the highest ecotoxic responses from terrestrial organisms. Heating increased PAC (bio)availability, without modifying any other soil physico-chemical properties. These results pointed out the importance of considering the contamination availability parameter in risk evaluation and also provide a possible tool for protective long-term risk assessment.


Subject(s)
Coke , Polycyclic Aromatic Hydrocarbons , Polycyclic Compounds , Environmental Pollution , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry
2.
J Hazard Mater ; 465: 133067, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38039813

ABSTRACT

COVID-19 outbreak led to a massive dissemination of protective polypropylene (PP) face masks in the environment, posing a new environmental risk amplified by mask photodegradation and fragmentation. Masks are made up of a several kilometres long-network of fibres with diameter from a few microns to around 20 µm. After photodegradation, these fibres disintegrate, producing water dispersible debris. Electrokinetics and particle stability observations support that photodegradation increases/decreases the charge/hydrophobicity of released colloidal fragments. This change in hydrophobicity is related to the production of UV-induced carbonyl and hydroxyl reactive groups detectable after a few days of exposure. Helical content, surface roughness and specific surface area of mask fibres are not significantly impacted by photodegradation. Fragmentation of fibres makes apparent, at the newly formed surfaces, otherwise-buried additives like TiO2 nanoparticles and various organic components. Mortality of gammarids is found to increase significantly over time when fed with 3 days-UV aged masks that carry biofilms grown in river, which is due to a decreased abundance of microphytes therein. In contrast, bacteria abundance and microbial community composition remain unchanged regardless of mask degradation. Overall, this work reports physicochemical properties of pristine and photodegraded masks, and ecosystemic functions and ecotoxicity of freshwater biofilms they can carry.


Subject(s)
Microbiota , Rivers , Masks , Photolysis , Polypropylenes , Biofilms , Plastics
3.
Environ Sci Pollut Res Int ; 25(12): 11281-11294, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28624948

ABSTRACT

Industrialization has left large surfaces of contaminated soils, which may act as a source of pollution for contiguous ecosystems, either terrestrial or aquatic. When polluted sites are recolonized by plants, dispersion of leaf litter might represent a non-negligible source of contaminants, especially metals. To evaluate the risks associated to contaminated leaf litter dispersion in aquatic ecosystems, we first measured the dynamics of metal loss from leaf litter during a 48-h experimental leaching. We used aspen (Populus tremula L.), a common tree species on these polluted sites, and collected leaf litter on three polluted sites (settling pond of a former steel mill) and three control sites situated in the same geographic area. Then, toxicity tests were carried out on individuals of a key detritivore species widely used in ecotoxicology tests, Gammarus fossarum (Crustacea, Amphipoda), with uncontaminated and contaminated leaf litter leachates, using a battery of biomarkers selected for their sensitivity to metallic stress. Leaf litters collected on polluted sites exhibited not only significantly higher cadmium and zinc concentrations but also lower lignin contents. All leaf litters released high amounts of chemical elements during the leaching process, especially potassium and magnesium, and, in a lesser extent, phosphorus, calcium, and trace metals (copper, cadmium, and zinc but not lead). Toxicity tests revealed that the most important toxic effects measured on G. fossarum were due to leaf litter leachates by themselves, whatever the origin of litter (from polluted or control sites), confirming the toxicity of such substances, probably due to their high content in phenolic compounds. Small additional toxic effects of leachates from contaminated leaf litters were only evidenced on gammarid lipid peroxidation, indicating that contaminated leaf litter leachates might be slightly more toxic than uncontaminated ones, but in a very reduced manner. Further studies will be required to verify if these patterns are generalizable to other species and to investigate the effects of contaminated leaf litter ingestion by consumers on aquatic food webs. Nevertheless, our results do not permit to exclude potential chronic effects of an exposure to contaminated leaf litter leachates in aquatic ecosystems.


Subject(s)
Cadmium/analysis , Ecotoxicology/methods , Metals/analysis , Phosphorus/analysis , Plant Leaves/chemistry , Zinc/analysis , Amphipoda/chemistry , Amphipoda/drug effects , Animals , Ecosystem , Fresh Water , Metals/chemistry , Toxicity Tests
4.
Environ Pollut ; 199: 139-47, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25645063

ABSTRACT

The geochemical cycles of lanthanides are being disrupted by increasing global production and human use, but their ecotoxicity is not fully characterized. In this study, the sensitivity of Aliivibrio fischeri and Pseudokirchneriella subcapitata to lanthanides increased with atomic number, while Daphnia magna, Heterocypris incongruens, Brachionus calyciflorus and Hydra attenuata were equally sensitive to the tested elements. In some cases, a marked decrease in exposure concentrations was observed over test duration and duly considered in calculating effect concentrations and predicted no effect concentrations (PNEC) for hazard and risk assessment. Comparison of PNEC with measured environmental concentrations indicate that, for the present, environmental risks deriving from lanthanides should be limited to some hotspots (e.g., downstream of wastewater treatment plants). However, considering the increasing environmental concentrations of lanthanides, the associated risks could become higher in the future. Ecotoxicological and risk assessment studies, along with monitoring, are required for properly managing these emerging contaminants.


Subject(s)
Aquatic Organisms/drug effects , Lanthanoid Series Elements/toxicity , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri , Animals , Chlorophyta , Daphnia/drug effects , Ecotoxicology , Risk Assessment
5.
Ecotoxicology ; 23(9): 1744-54, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25185786

ABSTRACT

The hazards linked to pharmaceutical residues like antidepressants are currently a major concern of ecotoxicology because they may have adverse effects on non-target aquatic organisms. Our study assesses the ecotoxicity of three antidepressants (fluoxetine, sertraline and clomipramine) using a battery of marine and freshwater species representing different trophic levels, and compares the bioassay sensitivity levels. We selected the following bioassays: the algal growth inhibition test (Skeletonema marinoi and Pseudokirchneriella subcapitata), the microcrustacean immobilization test (Artemia salina and Daphnia magna), development and adult survival tests on Hydra attenuata, embryotoxicity and metamorphosis tests on Crassostrea gigas, and in vitro assays on primary cultures of Haliotis tuberculata hemocytes. The results showed high inter-species variability in EC50-values ranging from 43 to 15,600 µg/L for fluoxetine, from 67 to 4,400 µg/L for sertraline, and from 4.70 µg/L to more than 100,000 µg/L for clomipramine. Algae (S. marinoi and P. subcapitata) and the embryo-larval stages of the oyster C. gigas were the most sensitive taxa. This raises an issue due to their ecological and/or economic importance. The marine crustacean A. salina was the least sensitive species. This difference in sensitivity between bioassays highlights the importance of using a test battery.


Subject(s)
Antidepressive Agents/toxicity , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/drug effects , Artemia/drug effects , Chlorophyta/drug effects , Crassostrea/drug effects , Daphnia/drug effects , Diatoms/drug effects , Dose-Response Relationship, Drug , Fresh Water/chemistry , Ostreidae/drug effects , Seawater/chemistry , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...